How can the Extended Euclidean Algorithm be simplified for faster computation?

Click For Summary
The discussion focuses on simplifying the Extended Euclidean Algorithm for faster computation, particularly in finding the equation ax + by = 1. The original poster struggles with a lengthy method and seeks a more concise approach. A participant explains that the key is to work backwards from the final equation, using each line from the initial calculations to substitute and simplify progressively. This method reduces the number of steps needed to reach the solution. Understanding this substitution technique can significantly streamline the process in exam situations.
SirEllwood
Messages
1
Reaction score
0
Hi all, ok so below is an example of the Extended Euclidean Algorithm, and i understand the first part perfectly to find the g.c.d.

701 − 2 × 322 = 57,
322 − 5 × 57 = 37,
57 − 37 = 20,
37 − 20 = 17,
20 − 17 = 3,
17 − 5 × 3 = 2,
3 − 2 = 1,

and

1 = 3 − 2
= 6 × 3 − 17
= 6 × 20 − 7 × 17
= 13 × 20 − 7 × 37
= 13 × 57 − 20 × 37
= 113 × 57 − 20 × 322
= 113 × 701 − 246 × 322.

Now on the second part, it is finding the equation of ax +by = 1, which i am generally having to find so i can compute the inverse of a(modb). They have managed to do this in 7 steps. It always takes me like more than twice as many in a really longwinded fashion. Has the example below missed out some steps for the sake of conciseness? I just don't understand how they are doing what they are doing.

For example I would have said

1= 3- 2
1 = (20-17) - (17 - (5x3))
1 = ((57-37) - (37-20)) - ((37-20) - 5(20-17))
etc.

Which is obviously far more longwinded, but equally as methodical. I want to know how to do this more concisely so in an exam it would be far less confusing and time consuming.

Thank you!
 
Physics news on Phys.org
Hi, "Sir", :P
yes, the second part looks abridged. This is how it would work:

You use the lines in the first part in reverse order, bottom to top. The bottom line says
1 = 3 - 2
(which is a Diophantine equation equal to 1, as required) so you just copy it. Now, each successive line of the first part gives an equation for a number, that you can substitute in the second part. The next one (bottom to top) on the first part says
2 = 17 - 5 x 3
and, substituting in your current Diophantine equation for 1, you get
1 = 3 - 17 + 5 x 3 (and, grouping the terms in 3 together,)
= 6 x 3 - 17
The next equation will give you an equation for 3 in terms of 17 and something else, so you'll be able to substitute, and then group the terms in 17 together. See how it works?

Hope this helps--
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
8K
Replies
1
Views
3K
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
4K