External Direct Sums & Direct Products .... Bland Ex. 1b, 2.1

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Sums
Click For Summary
SUMMARY

The discussion revolves around Problem 1(b) from Paul E. Bland's "Rings and Their Modules," specifically focusing on the relationship between external direct sums and direct products of modules. The key conclusion is that the direct product of a set of nontrivial modules equals the direct sum if and only if the index set is finite. The proof involves demonstrating that if the index set is infinite, there exists an element in the direct product that is not in the direct sum, thus confirming the necessity of finiteness for equality. The discussion also touches on the axiom of choice and its implications in constructing counterexamples.

PREREQUISITES
  • Understanding of module theory and definitions of direct sums and direct products.
  • Familiarity with the axiom of choice and its implications in mathematical proofs.
  • Knowledge of functions and their properties, particularly in the context of indexed sets.
  • Basic concepts of homological algebra and universal mapping problems.
NEXT STEPS
  • Study the definitions and properties of external direct sums and direct products in module theory.
  • Learn about the axiom of choice and its role in mathematical proofs and constructions.
  • Explore the concept of indexed sets and their applications in algebraic structures.
  • Read about homological algebra and universal mapping problems to understand the categorical perspective on direct sums and products.
USEFUL FOR

Mathematicians, particularly those studying algebra, module theory, and homological algebra, as well as students seeking to deepen their understanding of the relationships between direct sums and products in modules.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48

Homework Statement



I am reading Paul E. Bland's book: Rings and Their Modules and am currently focused on Section 2.1 Direct Products and Direct Sums ... ...

I need help with Problem 1(b) of Problem Set 2.1 ...

Problem 1(b) of Problem Set 2.1 reads as follows:Bland Problem 1, Section 2.1 reads as follows:

Bland - Problem 1 ... Problem Set 2.1 ... .png


I need some help with 1(b) ...

Homework Equations



The definition of External Direct Sum is as follows:
Bland - Defn of External Direct Sums ... page 43 ... .png


The Attempt at a Solution



I have had difficulty in formulating a rigorous and convincing proof of the statement in Problem 1(b) ... can someone please

(1) critique my attempt at a proof (see below)

(2) provide an alternate rigorous and convincing proofMy attempt at a proof is as follows:

We need to demonstrate that ##\prod_\Delta M_\alpha = \bigoplus_\Delta M_\alpha## if and only if ##\Delta## is a finite set ...Assume ##\prod_\Delta M_\alpha = \bigoplus_\Delta M_\alpha##

The above equality would require all of the terms ##(x_\alpha)## of ##\prod_\Delta M_\alpha## to have a finite number of components or elements in each ##(x_\alpha)## ... thus ##\Delta## is a finite set ...
Assume ##\Delta## is a finite set

... then ##\prod_\Delta M_\alpha## has terms of the form ##(x_\alpha) = ( x_1, x_2, \ ... \ ... \ , x_n )## for some ##n \in \mathbb{Z}## ... ...

and

... ## \bigoplus_\Delta M_\alpha## has the same terms given that each of the above terms ##(x_\alpha)## has a finite number of components ...
Hope someone can indicate how to formulate a better proof ...

Peter
 

Attachments

  • Bland - Problem 1 ... Problem Set 2.1 ... .png
    Bland - Problem 1 ... Problem Set 2.1 ... .png
    12.6 KB · Views: 658
  • Bland - Defn of External Direct Sums ... page 43 ... .png
    Bland - Defn of External Direct Sums ... page 43 ... .png
    43.4 KB · Views: 730
Physics news on Phys.org
Let ##y\in \prod_{\alpha\in\Delta} M_\alpha##. Then ##y## is a function with domain ##\Delta## and range ##\bigcup_{\alpha\in\Delta} M_\alpha## such that ##y(\alpha)\in M_\alpha##. Define ##N(y)=\{\alpha\in\Delta\ :\ y(\alpha)\neq 0_{M_\alpha}\}##, which is the set of 'nonzero' components of ##y##. Then by definition ##y## is also in the direct sum ##\sum_{\alpha\in\Delta} M_\alpha## iff ##|N(y)|<\infty##, that is, if ##y## has only a finite number of nonzero components.

If ##\Delta## is finite then every ##y## has a finite number of components, hence a finite number of nonzero components, hence is in the direct sum.

To prove the reverse direction we want to show that if ##\Delta## is infinite, there exists a ##y## in the direct product that is not in the direct sum, ie which has an infinite number of nonzero components. In fact that will only be true if an infinite number of modules in ##\Delta## are nontrivial. If that is the case then, to construct our counterexample element ##y##, for every nontrivial module ##M_\alpha##, we choose a nonzero element in the ##\alpha## position. Then ##y## will have an infinite number of nonzero components and hence is not in the direct sum.

Note that that para uses the axiom of choice, which is always a little sad. We can avoid it if we are given some more info about each module, such as a basis. Say that we are given a generating-set function ##B:\Delta\times\mathbb N\to \bigcup_{\alpha\in\Delta} M_\alpha## such that ##B(\alpha,k)## is the ##k##th element of the specified generating-set for ##M_\alpha##, and ##0_{M_\alpha}## if ##k## is larger than the size of the generating set of ##\alpha##. Then we can construct our counterexample ##y## as ##y(\alpha)=B(\alpha,1)## without using the axiom of choice.

So, to state the theorem part (b) properly, we would say that the direct product of a set ##\Delta## of nontrivial modules is equal to the direct sum thereof if the set is finite and that, assuming the axiom of choice, if the direct product is equal to the direct sum, the set ##\Delta## must be finite.

It is possible we can avoid using the axiom of choice, but it is late and my brain is tired and I can't see how right now.
 
  • Like
Likes   Reactions: Math Amateur
andrewkirk said:
Let ##y\in \prod_{\alpha\in\Delta} M_\alpha##. Then ##y## is a function with domain ##\Delta## and range ##\bigcup_{\alpha\in\Delta} M_\alpha## such that ##y(\alpha)\in M_\alpha##. Define ##N(y)=\{\alpha\in\Delta\ :\ y(\alpha)\neq 0_{M_\alpha}\}##, which is the set of 'nonzero' components of ##y##. Then by definition ##y## is also in the direct sum ##\sum_{\alpha\in\Delta} M_\alpha## iff ##|N(y)|<\infty##, that is, if ##y## has only a finite number of nonzero components.

If ##\Delta## is finite then every ##y## has a finite number of components, hence a finite number of nonzero components, hence is in the direct sum.

To prove the reverse direction we want to show that if ##\Delta## is infinite, there exists a ##y## in the direct product that is not in the direct sum, ie which has an infinite number of nonzero components. In fact that will only be true if an infinite number of modules in ##\Delta## are nontrivial. If that is the case then, to construct our counterexample element ##y##, for every nontrivial module ##M_\alpha##, we choose a nonzero element in the ##\alpha## position. Then ##y## will have an infinite number of nonzero components and hence is not in the direct sum.

Note that that para uses the axiom of choice, which is always a little sad. We can avoid it if we are given some more info about each module, such as a basis. Say that we are given a generating-set function ##B:\Delta\times\mathbb N\to \bigcup_{\alpha\in\Delta} M_\alpha## such that ##B(\alpha,k)## is the ##k##th element of the specified generating-set for ##M_\alpha##, and ##0_{M_\alpha}## if ##k## is larger than the size of the generating set of ##\alpha##. Then we can construct our counterexample ##y## as ##y(\alpha)=B(\alpha,1)## without using the axiom of choice.

So, to state the theorem part (b) properly, we would say that the direct product of a set ##\Delta## of nontrivial modules is equal to the direct sum thereof if the set is finite and that, assuming the axiom of choice, if the direct product is equal to the direct sum, the set ##\Delta## must be finite.

It is possible we can avoid using the axiom of choice, but it is late and my brain is tired and I can't see how right now.
Hi Andrew ... thanks so much for the help ...

BUT ... I need further help to understand what you have said ...

You write:

" ... ... Let ##y\in \prod_{\alpha\in\Delta} M_\alpha##. Then ##y## is a function with domain ##\Delta## and range ##\bigcup_{\alpha\in\Delta} M_\alpha## such that ##y(\alpha)\in M_\alpha##. ... ... "Can you please explain (slowly ... :smile:... ) how/why ##y## is a function with domain ##\Delta## and range ##\bigcup_{\alpha\in\Delta} M_\alpha## ...

Sorry to be slow to catch on ...

Peter
 
Math Amateur said:
Hi Andrew ... thanks so much for the help ...

BUT ... I need further help to understand what you have said ...

You write:

" ... ... Let ##y\in \prod_{\alpha\in\Delta} M_\alpha##. Then ##y## is a function with domain ##\Delta## and range ##\bigcup_{\alpha\in\Delta} M_\alpha## such that ##y(\alpha)\in M_\alpha##. ... ... "Can you please explain (slowly ... :smile:... ) how/why ##y## is a function with domain ##\Delta## and range ##\bigcup_{\alpha\in\Delta} M_\alpha## ...

Sorry to be slow to catch on ...

Peter
It is an equivalent way of viewing direct products. In the book, the elements are ##(y_\alpha)_{\alpha \in \Delta}##, but what does that mean? It means we have for each ##\alpha## an element ##y_\alpha \in M_\alpha##. But this is as well a function, because it maps ##\alpha \longmapsto y_\alpha##, i.e. a function from ##\Delta \longrightarrow \Pi_{\alpha\in\Delta}M_\alpha##. So the elements of direct products are often called a function of the index set: each element corresponds one-to-one to a function.
 
  • Like
Likes   Reactions: Math Amateur
fresh_42 said:
It is an equivalent way of viewing direct products. In the book, the elements are ##(y_\alpha)_{\alpha \in \Delta}##, but what does that mean? It means we have for each ##\alpha## an element ##y_\alpha \in M_\alpha##. But this is as well a function, because it maps ##\alpha \longmapsto y_\alpha##, i.e. a function from ##\Delta \longrightarrow \Pi_{\alpha\in\Delta}M_\alpha##. So the elements of direct products are often called a function of the index set: each element corresponds one-to-one to a function.
Thanks fresh_42 ... helpful and interesting ...

Do you know a text that treats direct products in this way ... or at least treats indexed sets in this way ...

Peter
 
Math Amateur said:
Do you know a text that treats direct products in this way ... or at least treats indexed sets in this way ...
Yes, but in the wrong language. I assume that any book about homological algebra does it this way. Haven't you started to read one? Have a look then. A direct product is defined as the solution of a universal mapping problem. It is basically not different from the algebraic version in your book above, but simply in the more general language of categories and functors. The direct product is defined with projections ##\Pi_{\alpha \in \Delta}M_\alpha \twoheadrightarrow M_\alpha##, the direct sum with injections ##M_\alpha \hookrightarrow \oplus_{\alpha \in \Delta} M_\alpha##. The direct sum is the co-product.

Here's a book I can recommend and which is in English:
https://www.amazon.com/dp/0387948236/?tag=pfamazon01-20
 
  • Like
Likes   Reactions: Math Amateur
Thanks fresh_42 ... appreciate your help ...

Will pursue this ...

Peter
 
Math Amateur said:
Thanks fresh_42 ... appreciate your help ...

Will pursue this ...

Peter
The book I've quoted has the direct product and sum on page 20 f., so I wouldn't buy a book just to cover these single cases.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
Replies
17
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K