A Extra (boundary?) term in Brans Dicke field equations

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Here is the action:
##S = \frac{1}{16\pi} \int d^4 x \sqrt{-g} (R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b} + 16\pi L_m)##
the ordinary matter is included via ##L_m##. Zeroing the variation ##\delta/\delta g^{\mu \nu}## in the usual way gives

##\frac{\delta}{\delta g^{\mu \nu}}[R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b}] + \frac{1}{\sqrt{-g}}(R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b}) \frac{\delta(\sqrt{-g})}{\delta g^{\mu \nu}} - 8\pi T_{\mu \nu} = 0##

where ##T_{\mu \nu} = \frac{-2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}L_m)}{\delta g^{\mu \nu}}## is the stress energy of the matter. Inserting the variations of ##R## and ##\sqrt{-g}## (which are ##R_{\mu \nu}## and ##-\frac{1}{2} \sqrt{-g} g_{\mu \nu}## respectively) gives

##G_{\mu \nu} + \frac{\omega}{\phi^2}(\frac{1}{2}g^{ab} \phi_{,a} \phi_{,b} g_{\mu \nu} - \phi_{,\mu} \phi_{,\nu}) = 8\pi T_{\mu \nu}/\phi##

On Wikipedia (https://en.wikipedia.org/wiki/Brans–Dicke_theory#The_field_equations) there is another term ##\frac{1}{\phi}(\nabla_a \nabla_b \phi - g_{ab} \square \phi)##. I suspect it is a boundary term? Where did it come from.
 
Physics news on Phys.org
ergospherical said:
I suspect it is a boundary term? Where did it come from.
Your suspicion is correct. By the Palatini identity, the general variation of the Ricci scalar is:$$\delta R=R_{\mu\nu}\delta g^{\mu\nu}+\nabla_{\sigma}\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)\tag{1}$$For the Einstein-Hilbert action, the last term on the right is dropped because it's a total divergence that integrates to an ignorable boundary term. But for the Brans-Dicke action, we multiply the full variation (1) by ##\phi## to get:$$\phi\delta R=\phi R_{\mu\nu}\delta g^{\mu\nu}+\phi\nabla_{\sigma}\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)$$$$=\phi R_{\mu\nu}\delta g^{\mu\nu}-\left(\nabla_{\sigma}\phi\right)\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)+\nabla_{\sigma}\left(\phi\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)\right)$$Again we ignore the last term as a divergence, but the second part is non-zero whenever ##\phi \neq \text{constant}##, and is responsible for the additional terms in the Brans-Dicke field-equations that involve second-derivatives of ##\phi##.
 
Last edited:
  • Like
Likes ergospherical
Interesting - thank you.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top