A Extra (boundary?) term in Brans Dicke field equations

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Here is the action:
##S = \frac{1}{16\pi} \int d^4 x \sqrt{-g} (R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b} + 16\pi L_m)##
the ordinary matter is included via ##L_m##. Zeroing the variation ##\delta/\delta g^{\mu \nu}## in the usual way gives

##\frac{\delta}{\delta g^{\mu \nu}}[R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b}] + \frac{1}{\sqrt{-g}}(R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b}) \frac{\delta(\sqrt{-g})}{\delta g^{\mu \nu}} - 8\pi T_{\mu \nu} = 0##

where ##T_{\mu \nu} = \frac{-2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}L_m)}{\delta g^{\mu \nu}}## is the stress energy of the matter. Inserting the variations of ##R## and ##\sqrt{-g}## (which are ##R_{\mu \nu}## and ##-\frac{1}{2} \sqrt{-g} g_{\mu \nu}## respectively) gives

##G_{\mu \nu} + \frac{\omega}{\phi^2}(\frac{1}{2}g^{ab} \phi_{,a} \phi_{,b} g_{\mu \nu} - \phi_{,\mu} \phi_{,\nu}) = 8\pi T_{\mu \nu}/\phi##

On Wikipedia (https://en.wikipedia.org/wiki/Brans–Dicke_theory#The_field_equations) there is another term ##\frac{1}{\phi}(\nabla_a \nabla_b \phi - g_{ab} \square \phi)##. I suspect it is a boundary term? Where did it come from.
 
Physics news on Phys.org
ergospherical said:
I suspect it is a boundary term? Where did it come from.
Your suspicion is correct. By the Palatini identity, the general variation of the Ricci scalar is:$$\delta R=R_{\mu\nu}\delta g^{\mu\nu}+\nabla_{\sigma}\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)\tag{1}$$For the Einstein-Hilbert action, the last term on the right is dropped because it's a total divergence that integrates to an ignorable boundary term. But for the Brans-Dicke action, we multiply the full variation (1) by ##\phi## to get:$$\phi\delta R=\phi R_{\mu\nu}\delta g^{\mu\nu}+\phi\nabla_{\sigma}\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)$$$$=\phi R_{\mu\nu}\delta g^{\mu\nu}-\left(\nabla_{\sigma}\phi\right)\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)+\nabla_{\sigma}\left(\phi\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)\right)$$Again we ignore the last term as a divergence, but the second part is non-zero whenever ##\phi \neq \text{constant}##, and is responsible for the additional terms in the Brans-Dicke field-equations that involve second-derivatives of ##\phi##.
 
Last edited:
  • Like
Likes ergospherical
Interesting - thank you.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Back
Top