A Extra (boundary?) term in Brans Dicke field equations

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Here is the action:
##S = \frac{1}{16\pi} \int d^4 x \sqrt{-g} (R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b} + 16\pi L_m)##
the ordinary matter is included via ##L_m##. Zeroing the variation ##\delta/\delta g^{\mu \nu}## in the usual way gives

##\frac{\delta}{\delta g^{\mu \nu}}[R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b}] + \frac{1}{\sqrt{-g}}(R\phi - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b}) \frac{\delta(\sqrt{-g})}{\delta g^{\mu \nu}} - 8\pi T_{\mu \nu} = 0##

where ##T_{\mu \nu} = \frac{-2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}L_m)}{\delta g^{\mu \nu}}## is the stress energy of the matter. Inserting the variations of ##R## and ##\sqrt{-g}## (which are ##R_{\mu \nu}## and ##-\frac{1}{2} \sqrt{-g} g_{\mu \nu}## respectively) gives

##G_{\mu \nu} + \frac{\omega}{\phi^2}(\frac{1}{2}g^{ab} \phi_{,a} \phi_{,b} g_{\mu \nu} - \phi_{,\mu} \phi_{,\nu}) = 8\pi T_{\mu \nu}/\phi##

On Wikipedia (https://en.wikipedia.org/wiki/Brans–Dicke_theory#The_field_equations) there is another term ##\frac{1}{\phi}(\nabla_a \nabla_b \phi - g_{ab} \square \phi)##. I suspect it is a boundary term? Where did it come from.
 
Physics news on Phys.org
ergospherical said:
I suspect it is a boundary term? Where did it come from.
Your suspicion is correct. By the Palatini identity, the general variation of the Ricci scalar is:$$\delta R=R_{\mu\nu}\delta g^{\mu\nu}+\nabla_{\sigma}\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)\tag{1}$$For the Einstein-Hilbert action, the last term on the right is dropped because it's a total divergence that integrates to an ignorable boundary term. But for the Brans-Dicke action, we multiply the full variation (1) by ##\phi## to get:$$\phi\delta R=\phi R_{\mu\nu}\delta g^{\mu\nu}+\phi\nabla_{\sigma}\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)$$$$=\phi R_{\mu\nu}\delta g^{\mu\nu}-\left(\nabla_{\sigma}\phi\right)\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)+\nabla_{\sigma}\left(\phi\left(g^{\mu\nu}\delta\Gamma_{\mu\nu}^{\sigma}-g^{\mu\sigma}\delta\Gamma_{\lambda\mu}^{\lambda}\right)\right)$$Again we ignore the last term as a divergence, but the second part is non-zero whenever ##\phi \neq \text{constant}##, and is responsible for the additional terms in the Brans-Dicke field-equations that involve second-derivatives of ##\phi##.
 
Last edited:
  • Like
Likes ergospherical
Interesting - thank you.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top