MHB Find ∑((2k+1)+√k(k+[1)])/(√k+√(k+1))

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$$\sum_{k=1}^{99}\dfrac {(2k+1)+\sqrt{k(k+1)}}{\sqrt k+\sqrt{k+1}}$$
 
Mathematics news on Phys.org
Albert said:
$$\sum_{k=1}^{99}\dfrac {(2k+1)+\sqrt{k(k+1)}}{\sqrt k+\sqrt{k+1}}$$

we have $(\sqrt{k+1} + \sqrt{k})^2 = 2k + 1 + 2 \sqrt{k(k+1)}$
hence $2k + 1 + \sqrt{k(k+1)} =(\sqrt{k+1} + \sqrt{k})^2 - \sqrt{k(k+1)}$
or $\frac{2k + 1 + \sqrt{k(k+1)}}{\sqrt{k+1} + \sqrt{k}}=(\sqrt{k+1} + \sqrt{k}) - \sqrt{k(k+1)}(\sqrt{k+1}-\sqrt{ k})$
$= (\sqrt{k+1} + \sqrt{k}) - (k+1) \sqrt{k} + k \sqrt{k+1}$
$= (k+1)\sqrt{k+1} - k\sqrt{k}$

this is telescopic sm and adding from 1 to 99 we get the sum =$100 * \sqrt{100} -1 * \sqrt{1} = 999$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top