MHB Find ab if log_b(a) = log_a(b)

  • Thread starter Thread starter My Name is Earl
  • Start date Start date
Click For Summary
If log_b(a) = log_a(b) with conditions that a ≠ b, ab > 0, and neither a nor b is 1, then the value of ab is determined to be 1. By letting x = log_a(b) = log_b(a), it follows that a^x = b and b^x = a. Dividing these equations leads to the conclusion that (a/b)^x = (a/b)^{-1}. This implies that ab = 1. The consensus among participants confirms this solution.
My Name is Earl
Messages
12
Reaction score
0
I have tried various methods to solve this...

If logb(a) = loga(b) where a != b (!= means does not equal), ab > 0 and neither a nor b are 1, then what is the value of ab?
 
Mathematics news on Phys.org
My Name is Earl said:
I have tried various methods to solve this...

If logb(a) = loga(b) where a != b (!= means does not equal), ab > 0 and neither a nor b are 1, then what is the value of ab?

Let's let:

$$x=\log_a(b)=\log_b(a)$$

Now this implies:

$$a^x=b$$

$$b^x=a$$

Dividing the former by the latter, we obtain:

$$\left(\frac{a}{b}\right)^x=\left(\frac{a}{b}\right)^{-1}$$

What does this imply?
 
MarkFL said:
Let's let:

$$x=\log_a(b)=\log_b(a)$$

Now this implies:

$$a^x=b$$

$$b^x=a$$

Dividing the former by the latter, we obtain:

$$\left(\frac{a}{b}\right)^x=\left(\frac{a}{b}\right)^{-1}$$

What does this imply?

This implies that ab = 1
 
My Name is Earl said:
This implies that ab = 1

Yes, that's what I found as well. (Yes)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K