MHB Find ab if log_b(a) = log_a(b)

  • Thread starter Thread starter My Name is Earl
  • Start date Start date
AI Thread Summary
If log_b(a) = log_a(b) with conditions that a ≠ b, ab > 0, and neither a nor b is 1, then the value of ab is determined to be 1. By letting x = log_a(b) = log_b(a), it follows that a^x = b and b^x = a. Dividing these equations leads to the conclusion that (a/b)^x = (a/b)^{-1}. This implies that ab = 1. The consensus among participants confirms this solution.
My Name is Earl
Messages
12
Reaction score
0
I have tried various methods to solve this...

If logb(a) = loga(b) where a != b (!= means does not equal), ab > 0 and neither a nor b are 1, then what is the value of ab?
 
Mathematics news on Phys.org
My Name is Earl said:
I have tried various methods to solve this...

If logb(a) = loga(b) where a != b (!= means does not equal), ab > 0 and neither a nor b are 1, then what is the value of ab?

Let's let:

$$x=\log_a(b)=\log_b(a)$$

Now this implies:

$$a^x=b$$

$$b^x=a$$

Dividing the former by the latter, we obtain:

$$\left(\frac{a}{b}\right)^x=\left(\frac{a}{b}\right)^{-1}$$

What does this imply?
 
MarkFL said:
Let's let:

$$x=\log_a(b)=\log_b(a)$$

Now this implies:

$$a^x=b$$

$$b^x=a$$

Dividing the former by the latter, we obtain:

$$\left(\frac{a}{b}\right)^x=\left(\frac{a}{b}\right)^{-1}$$

What does this imply?

This implies that ab = 1
 
My Name is Earl said:
This implies that ab = 1

Yes, that's what I found as well. (Yes)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top