Find all the solutions of the congruence

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion focuses on solving the congruence 7x^2 + 15x ≡ 4 (mod 111). It demonstrates the transformation of the equation into a quadratic form and identifies two cases for solutions. The first case yields x ≡ 7 (mod 111) and the second case yields x ≡ 86 (mod 111). Additionally, the conversation addresses the legitimacy of dividing by 2, 7, and 14, emphasizing that these numbers are coprime to 111, allowing for their inverses to exist. The final solutions to the congruence are confirmed as x ≡ 7 (mod 111) and x ≡ 86 (mod 111).
Math100
Messages
813
Reaction score
229
Homework Statement
Find all the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Relevant Equations
None.
Consider the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Note that ## 4\cdot 7=28 ##.
Then ## 7x^2+15x\equiv 4\pmod {111}\implies 196x^2+420x-112\equiv 0\pmod {111} ##.
Observe that
\begin{align*}
&196x^2+420x-112\equiv 0\pmod {111}\\
&\implies (14x)^2+2(14x)(15)+15^2-112-225\equiv 0\pmod {111}\\
&\implies (14x+15)^2\equiv 337\pmod {111}\\
&\implies (14x+15)^2\equiv 4\pmod {111}\\
&\implies (14x+15)^2\equiv 2^{2}\pmod {111}\\
&\implies 14x+15\equiv \pm2\pmod {111}.\\
\end{align*}
Now we consider two cases.
Case #1: Let ## 14x+15\equiv 2\pmod {111} ##.
Then ## 14x\equiv -13\pmod {111} ##.
Thus ## 14x\equiv 98\pmod {111}\implies x\equiv 7\pmod {111} ##.
Case #2: Let ## 14x+15\equiv -2\pmod {111} ##.
Then ## 14x\equiv -17\pmod {111}\implies 14x\equiv 94\pmod {111}\implies 7x\equiv 47\pmod {111} ##.
Thus ## 7x\equiv 602\pmod {111}\implies x\equiv 86\pmod {111} ##.
Therefore, the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ## are ## x\equiv 7\pmod {111} ## and ## x\equiv 86\pmod {111} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find all the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Relevant Equations:: None.

Consider the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Note that ## 4\cdot 7=28 ##.
Then ## 7x^2+15x\equiv 4\pmod {111}\implies 196x^2+420x-112\equiv 0\pmod {111} ##.
Observe that
\begin{align*}
&196x^2+420x-112\equiv 0\pmod {111}\\
&\implies (14x)^2+2(14x)(15)+15^2-112-225\equiv 0\pmod {111}\\
&\implies (14x+15)^2\equiv 337\pmod {111}\\
&\implies (14x+15)^2\equiv 4\pmod {111}\\
&\implies (14x+15)^2\equiv 2^{2}\pmod {111}\\
&\implies 14x+15\equiv \pm2\pmod {111}.\\
\end{align*}
Now we consider two cases.
Case #1: Let ## 14x+15\equiv 2\pmod {111} ##.
Then ## 14x\equiv -13\pmod {111} ##.
Thus ## 14x\equiv 98\pmod {111}\implies x\equiv 7\pmod {111} ##.
Case #2: Let ## 14x+15\equiv -2\pmod {111} ##.
Then ## 14x\equiv -17\pmod {111}\implies 14x\equiv 94\pmod {111}\implies 7x\equiv 47\pmod {111} ##.
Thus ## 7x\equiv 602\pmod {111}\implies x\equiv 86\pmod {111} ##.
Therefore, the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ## are ## x\equiv 7\pmod {111} ## and ## x\equiv 86\pmod {111} ##.
Correct. However, you divided by ##2,7## and ##14## so it would be good to say that you are allowed to do this and why.
 
fresh_42 said:
Correct. However, you divided by ##2,7## and ##14## so it would be good to say that you are allowed to do this and why.
How should I explain those divisions of ## 2, 7, 14 ##?
 
Since ##111## isn't a prime, ##\mathbb{Z}_{111}## has zero divisors. ##111=3\cdot 37## so we cannot divide by ##3## or ##37##. But ##2,7## and ##14## are all coprime to ##111## so they have inverses by Bézout's lemma.

Whenever we divide, say by ##14## then what we actually do is multiply by ##14^{-1}## because the division isn't defined, only multiplication. In order to perform that multiplication, ##14^{-1}## has to exist. ##37^{-1}## does not exist modulo ##111##.
 
fresh_42 said:
Since ##111## isn't a prime, ##\mathbb{Z}_{111}## has zero divisors. ##111=3\cdot 37## so we cannot divide by ##3## or ##37##. But ##2,7## and ##14## are all coprime to ##111## so they have inverses by Bézout's lemma.

Whenever we divide, say by ##14## then what we actually do is multiply by ##14^{-1}## because the division isn't defined, only multiplication. In order to perform that multiplication, ##14^{-1}## has to exist. ##37^{-1}## does not exist modulo ##111##.
By Bezout's lemma, do you mean ## ax+by=d ## where ## a, b ## are integers with the greatest common divisor ## d ##?
 
Math100 said:
By Bezout's lemma, do you mean ## ax+by=d ## where ## a, b ## are integers with the greatest common divisor ## d ##?
Yes. And in case ##d=1=\operatorname{gcd}(14,111)## we have ##14\cdot a +111\cdot b=1.## This means that ##14\cdot a\equiv 1\pmod{111}## and so ##14^{-1}=a.##
 
That ##37^{-1}## does not exist modulo ##111## is similar. Assume it would exist, then
$$
3\equiv 3\cdot 1\equiv 3\cdot (37\cdot 37^{-1})\equiv (3\cdot 37)\cdot 37^{-1}\equiv 111\cdot 37^{-1}= 0 \pmod{111}
$$
which is a contradiction. Hence ##37^{-1}## cannot exist.
 
Back
Top