Find all the solutions of the congruence

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The solutions to the congruence equation 7x² + 15x ≡ 4 (mod 111) are definitively x ≡ 7 (mod 111) and x ≡ 86 (mod 111). The derivation involves transforming the equation into 196x² + 420x - 112 ≡ 0 (mod 111) and applying the method of completing the square. The divisions by 2, 7, and 14 are valid since they are coprime to 111, allowing the use of their modular inverses as per Bézout's lemma.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with Bézout's lemma
  • Knowledge of completing the square method in algebra
  • Ability to work with congruences and modular inverses
NEXT STEPS
  • Study modular arithmetic and its applications in number theory
  • Learn about Bézout's lemma and its implications for divisibility
  • Explore the method of completing the square in solving quadratic equations
  • Investigate the properties of modular inverses and their calculation
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving congruences and understanding modular arithmetic concepts.

Math100
Messages
817
Reaction score
230
Homework Statement
Find all the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Relevant Equations
None.
Consider the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Note that ## 4\cdot 7=28 ##.
Then ## 7x^2+15x\equiv 4\pmod {111}\implies 196x^2+420x-112\equiv 0\pmod {111} ##.
Observe that
\begin{align*}
&196x^2+420x-112\equiv 0\pmod {111}\\
&\implies (14x)^2+2(14x)(15)+15^2-112-225\equiv 0\pmod {111}\\
&\implies (14x+15)^2\equiv 337\pmod {111}\\
&\implies (14x+15)^2\equiv 4\pmod {111}\\
&\implies (14x+15)^2\equiv 2^{2}\pmod {111}\\
&\implies 14x+15\equiv \pm2\pmod {111}.\\
\end{align*}
Now we consider two cases.
Case #1: Let ## 14x+15\equiv 2\pmod {111} ##.
Then ## 14x\equiv -13\pmod {111} ##.
Thus ## 14x\equiv 98\pmod {111}\implies x\equiv 7\pmod {111} ##.
Case #2: Let ## 14x+15\equiv -2\pmod {111} ##.
Then ## 14x\equiv -17\pmod {111}\implies 14x\equiv 94\pmod {111}\implies 7x\equiv 47\pmod {111} ##.
Thus ## 7x\equiv 602\pmod {111}\implies x\equiv 86\pmod {111} ##.
Therefore, the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ## are ## x\equiv 7\pmod {111} ## and ## x\equiv 86\pmod {111} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find all the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Relevant Equations:: None.

Consider the congruence ## 7x^2+15x\equiv 4\pmod {111} ##.
Note that ## 4\cdot 7=28 ##.
Then ## 7x^2+15x\equiv 4\pmod {111}\implies 196x^2+420x-112\equiv 0\pmod {111} ##.
Observe that
\begin{align*}
&196x^2+420x-112\equiv 0\pmod {111}\\
&\implies (14x)^2+2(14x)(15)+15^2-112-225\equiv 0\pmod {111}\\
&\implies (14x+15)^2\equiv 337\pmod {111}\\
&\implies (14x+15)^2\equiv 4\pmod {111}\\
&\implies (14x+15)^2\equiv 2^{2}\pmod {111}\\
&\implies 14x+15\equiv \pm2\pmod {111}.\\
\end{align*}
Now we consider two cases.
Case #1: Let ## 14x+15\equiv 2\pmod {111} ##.
Then ## 14x\equiv -13\pmod {111} ##.
Thus ## 14x\equiv 98\pmod {111}\implies x\equiv 7\pmod {111} ##.
Case #2: Let ## 14x+15\equiv -2\pmod {111} ##.
Then ## 14x\equiv -17\pmod {111}\implies 14x\equiv 94\pmod {111}\implies 7x\equiv 47\pmod {111} ##.
Thus ## 7x\equiv 602\pmod {111}\implies x\equiv 86\pmod {111} ##.
Therefore, the solutions of the congruence ## 7x^2+15x\equiv 4\pmod {111} ## are ## x\equiv 7\pmod {111} ## and ## x\equiv 86\pmod {111} ##.
Correct. However, you divided by ##2,7## and ##14## so it would be good to say that you are allowed to do this and why.
 
fresh_42 said:
Correct. However, you divided by ##2,7## and ##14## so it would be good to say that you are allowed to do this and why.
How should I explain those divisions of ## 2, 7, 14 ##?
 
Since ##111## isn't a prime, ##\mathbb{Z}_{111}## has zero divisors. ##111=3\cdot 37## so we cannot divide by ##3## or ##37##. But ##2,7## and ##14## are all coprime to ##111## so they have inverses by Bézout's lemma.

Whenever we divide, say by ##14## then what we actually do is multiply by ##14^{-1}## because the division isn't defined, only multiplication. In order to perform that multiplication, ##14^{-1}## has to exist. ##37^{-1}## does not exist modulo ##111##.
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Since ##111## isn't a prime, ##\mathbb{Z}_{111}## has zero divisors. ##111=3\cdot 37## so we cannot divide by ##3## or ##37##. But ##2,7## and ##14## are all coprime to ##111## so they have inverses by Bézout's lemma.

Whenever we divide, say by ##14## then what we actually do is multiply by ##14^{-1}## because the division isn't defined, only multiplication. In order to perform that multiplication, ##14^{-1}## has to exist. ##37^{-1}## does not exist modulo ##111##.
By Bezout's lemma, do you mean ## ax+by=d ## where ## a, b ## are integers with the greatest common divisor ## d ##?
 
Math100 said:
By Bezout's lemma, do you mean ## ax+by=d ## where ## a, b ## are integers with the greatest common divisor ## d ##?
Yes. And in case ##d=1=\operatorname{gcd}(14,111)## we have ##14\cdot a +111\cdot b=1.## This means that ##14\cdot a\equiv 1\pmod{111}## and so ##14^{-1}=a.##
 
  • Like
Likes   Reactions: Math100
That ##37^{-1}## does not exist modulo ##111## is similar. Assume it would exist, then
$$
3\equiv 3\cdot 1\equiv 3\cdot (37\cdot 37^{-1})\equiv (3\cdot 37)\cdot 37^{-1}\equiv 111\cdot 37^{-1}= 0 \pmod{111}
$$
which is a contradiction. Hence ##37^{-1}## cannot exist.
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
3K