MHB Find $\alpha$ to Make ODE Resonance Free

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ode Resonance
Dustinsfl
Messages
2,217
Reaction score
5
$y''+y=\alpha\cos x + \cos^3x$

What value of $\alpha$ makes this resonance free?

$\cos^3 x = \frac{1}{4}\cos 3x+\frac{3}{4}\cos x$

So $y''+y=(\alpha+\frac{3}{4})\cos x + \frac{1}{4}\cos 3x$

What am I supposed to do to find alpha?
 
Physics news on Phys.org
dwsmith said:
$y''+y=\alpha\cos x + \cos^3x$

What value of $\alpha$ makes this resonance free?

$\cos^3 x = \frac{1}{4}\cos 3x+\frac{3}{4}\cos x$

So $y''+y=(\alpha+\frac{3}{4})\cos x + \frac{1}{4}\cos 3x$

What am I supposed to do to find alpha?

To make this resonance free you need that the forcing term on the right does not contain a component at a natural frequency of the homogeneous equation. The natural angular frequencies of the homogeneous equation are the (imaginary part of the) roots of the characteristic equation, which here are \(\pm 1\), so you need the coefficient of \(\cos(x)\) to be zero.

You can see the resonance in the contribution of the \(e^it\) component of the forcing in your other ODE thread where the resonance term grows with time.

CB
 
Last edited:

The roots should be $\pm i$ but $|\pm i | = 1$ still.

We want to remove the $\cos x$. Is that, because if not, we would have terms $\cos x$ and $x\cos x$ in the solution? Therefore, the variable coefficient we cause the resonance?
 
dwsmith said:

The roots should be $\pm i$ but $|\pm i | = 1$ still.

We want to remove the $\cos x$. Is that, because if not, we would have terms $\cos x$ and $x\cos x$ in the solution? Therefore, the variable coefficient we cause the resonance?

Only the \(x \cos(x)\) term is a problem as this is a oscillatory term with amplitude that grows without bound.

CB
 
So $\alpha = -\dfrac{3}{4}$.
 
dwsmith said:
So $\alpha = -\dfrac{3}{4}$.

Yes.

CB
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
52
Views
7K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
11
Views
3K
Replies
2
Views
5K
Replies
3
Views
3K
Replies
4
Views
3K
Back
Top