MHB Find Equation of Parabola Given Focus & Directrix - Jose's Q&A

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Focus Parabola
AI Thread Summary
To find the equation of a parabola given the focus at (3,5) and the directrix y=1, the relationship between a point on the parabola, the focus, and the directrix is established. The equation is derived by setting the perpendicular distance from a point (x,y) to the directrix equal to the distance from that point to the focus. This leads to the equation |y-1| = √((x-3)² + (y-5)², which is then squared and simplified. The final equation of the parabola is y = (x² - 6x + 33) / 8. This method effectively demonstrates how to derive a parabola's equation using its focus and directrix.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Writing an equation given the directrix and focus?


focus: (3,5) directrix y=1. write an equation for the parabola. How do I do this? please help!

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Re: jose's question at Yahoo! Questions: find the equation of the parabola given the focus and direc

Hello jose,

Let's let $(x,y)$ be an arbitrary point on the parabola. Now, we know the perpendicular distance from the point to the directrix will be equal to the distance between this point and the focus. Thus, we may state:

$$|y-1|=\sqrt{(x-3)^2+(y-5)^2}$$

Square both sides:

$$(y-1)^2=(x-3)^2+(y-5)^2$$

Expand binomials:

$$y^2-2y+1=x^2-6x+9+y^2-10y+25$$

Collect like terms:

$$8y=x^2-6x+33$$

Divide through by $8$:

$$y=\frac{x^2-6x+33}{8}$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top