MHB Find Fractional Part of $(p+1)!/(p^2)$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    fractional
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $p$ be a prime number. Find the fractional part of $\dfrac{(p+1)!}{p^2}$.
 
Mathematics news on Phys.org
Because p is prime by wilson theorem $p | (p-1)!+1$
Or $p^2| (p! + p)$
or $p^2| (p! + p) (p+1)$
Or $p^2| (p+1)! + p(p+1)$
or $(p+1)! \equiv -p(p+1) \pmod p^2$

So fractional part of $\frac{(p+1)!}{p^2}$ is same as fractional part of $\frac{-p(p+1)}{p^2}$ or is $\frac{p-1}{p}$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 6 ·
Replies
6
Views
565
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
48
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K