POTW Find Limit of $$\frac{x}{e} - \left(\frac{x}{x+1}\right)^x$$ at Infinity

Click For Summary
The limit being evaluated is $$\lim_{x\to \infty} x\left[\frac{1}{e} - \left(\frac{x}{x+1}\right)^x\right]$$. The discussion highlights a correction regarding the sign in the logarithmic expansion used in the calculation. Participants analyze the behavior of the expression as x approaches infinity, focusing on the exponential decay of the term $$\left(\frac{x}{x+1}\right)^x$$. The limit ultimately converges to a specific value, emphasizing the importance of accurate logarithmic manipulation in limit evaluations. The conversation underscores the nuances in limit calculations at infinity.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Find the limit $$\lim_{x\to \infty} x\left[\frac{1}{e} - \left(\frac{x}{x+1}\right)^x\right]$$
 
  • Like
Likes DrClaude and topsquark
Physics news on Phys.org
Substiuting x=1/y, the task is
\lim_{y\rightarrow +0}\frac{e^{-1}-(1+y)^{-1/y}}{y}
Considering
-\frac{1}{y}\ln(1+y) \approx -\frac{1}{y} (y+\frac{y^2}{2})
the task is
\lim_{y\rightarrow +0}\frac{e^{-1}(1-e^{-y/2})}{y}=(2e)^{-1}
[EDIT]
-\frac{1}{y}\ln(1+y) \approx -\frac{1}{y} (y-\frac{y^2}{2})
the task is
\lim_{y\rightarrow +0}\frac{e^{-1}(1-e^{y/2})}{y}=-(2e)^{-1}
 
Last edited:
  • Like
Likes malawi_glenn, topsquark and DrClaude
@anuttarasammyak

Shouldn't it be -1/(2e) ?
 
  • Like
Likes anuttarasammyak and topsquark
My bad, wrong sign in expansion of log.
 
  • Like
Likes topsquark and malawi_glenn