Find Min of $(a-1)^4+(b+2)^4$ w/ $a+b\ge 3$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary

Discussion Overview

The discussion revolves around finding the minimum value of the expression $(a-1)^4+(b+2)^4$ under the constraint that $a+b\ge 3$. The scope includes mathematical reasoning and optimization within the context of real numbers.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Some participants reiterate the problem statement without providing additional insights or solutions.

Areas of Agreement / Disagreement

There is no substantive discussion or disagreement present, as multiple posts simply restate the initial problem without further elaboration.

Contextual Notes

The posts lack any exploration of methods or approaches to solve the problem, and there are no mathematical steps or assumptions discussed.

Who May Find This Useful

This may be of interest to individuals looking to understand optimization problems involving constraints in mathematical contexts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ and $b$ be real numbers such that $a+b\ge 3$.

What is the minimum value of the expression $(a-1)^4+(b+2)^4$?
 
Physics news on Phys.org
anemone said:
Let $a$ and $b$ be real numbers such that $a+b\ge 3$.

What is the minimum value of the expression $(a-1)^4+(b+2)^4$?

let $m = a - 1$ and $n = b+ 2$
we get $m+n = a + b + 1 >= 3+ 1 >= 4$
we need to minimize $m^4+n^4$ given $m+n>=4$ and from law of symmetry it is minumum at
$m=n=2$ or $a=3, b=0$ and value is $32$. as at a = 1 b = 2 it is $4^4= 256$ larger
 
kaliprasad said:
let $m = a - 1$ and $n = b+ 2$
we get $m+n = a + b + 1 >= 3+ 1 >= 4$
we need to minimize $m^4+n^4$ given $m+n>=4$ and from law of symmetry it is minumum at
$m=n=2$ or $a=3, b=0$ and value is $32$. as at a = 1 b = 2 it is $4^4= 256$ larger

I like how you cleverly coaxed cyclic symmetry from the problem...well played! (Yes)
 
anemone said:
Let $a$ and $b$ be real numbers such that $a+b\ge 3$.

What is the minimum value of the expression $(a-1)^4+(b+2)^4$?

The lowest values for $a$ and $b$ must occur when $a+b=3$. This can be seen by graphing the inequality $y\ge3-x$ on the Cartesian axes. As the exponents in the expression are even, negative numbers do not effectively reduce the sum.

Lagrange multipliers:

$$\Lambda=(a-1)^4+(b+2)^4-\lambda(a+b-3)$$
$$\dfrac{d\Lambda}{da}=4(a-1)^3-\lambda=0$$
$$\dfrac{d\Lambda}{db}=4(b+2)^3-\lambda=0$$
$$\dfrac{d\Lambda}{d\lambda}=a+b-3=0$$
$$\Rightarrow4(a-1)^3=4(b+2)^3$$
$$\implies a-1=b+2$$
$$\Rightarrow a-b=3\Leftrightarrow a+b=3$$
$$\Rightarrow2a=6\Rightarrow a=3,\,b=0$$
$$\min\left[(a-1)^4+(b+2)^4\right]=2^4+2^4=32$$
 
Thanks all for participating!(Cool)

My solution:

$$\begin{align*}(a-1)^4+(b+2)^4&\ge \frac{((a-1)^2+(b+2)^2)^2}{1+1}\text{by the extended Cauchy-Schwarz inequality}\\&\ge \frac{\left(\frac{(a-1+b+2)^2}{1+1}\right)^2}{1+1}\text{again by the extended Cauchy-Schwarz inequality}\\&= \frac{\left(\frac{(a+b+1)^2}{2}\right)^2}{2}\\& \ge \frac{\left(\frac{(3+1)^2}{2}\right)}{2}\text{since}\,\,\,a+b\ge 3\\& =32\end{align*}$$

Equality occurs when $a=3,\,b=0$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K