MHB Find Min of x+y+z for Real x,y,z ≤ 3/2

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for all positive real $x,\,y$ and $z$ that satisfies the condition $x+y+z\le \dfrac{3}{2}$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for all positive real $x,\,y$ and $z$ that satisfies the condition $x+y+z\le \dfrac{3}{2}$.

$$x+y+z+\dfrac1x+\dfrac1y+\dfrac1z\ge\dfrac32+a$$ where $a$ is some non-negative constant.

$$x+y+z-\dfrac32+\dfrac1x+\dfrac1y+\dfrac1z\ge a$$

$$b=x+y+z-\dfrac32\implies-\dfrac32\lt b\le0$$

$$\dfrac1x+\dfrac1y+\dfrac1z\ge a+|b|$$

Applying the AM-GM inequality, we have $$\dfrac{\dfrac1x+\dfrac1y+\dfrac1z}{3}\ge\left(\dfrac{1}{xyz}\right)^{1/3}$$
hence $$\dfrac1x+\dfrac1y+\dfrac1z$$ is at a minimum when $x=y=z=\dfrac12$.

From this, $b=0$ and $a=6$, so the desired minimum is $6+\dfrac32=\dfrac{15}{2}$.
 
Great job, greg1313!:)

My solution:

Note that from AM-GM inequality we get $3\sqrt[3]{xyz}\le x+y+z\le \dfrac{3}{2}$, which translates to $\sqrt[3]{xyz}\le \dfrac{1}{2}$, we can conclude $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{3}{\sqrt[3]{xyz}}=\dfrac{3}{\dfrac{1}{2}}=6$.

By AM-HM we have $x+y+z\ge \dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$ so the intended expression becomes

$x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

Since $x,\,y$ and $z$ are positive real numbers and $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\ge 2\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}=6$, we can conclude by now that

$\begin{align*}x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}&\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\\&\ge 6+\dfrac{9}{6}\\&\ge \dfrac{15}{2}\end{align*}$

Equality occurs when $\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{1}{2}$.
 
My solution:
anemone said:
Note that from AM-GM inequality we get $3\sqrt[3]{xyz}\le x+y+z\le \dfrac{3}{2}$, which translates to $\sqrt[3]{xyz}\le \dfrac{1}{2}$, we can conclude $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{3}{\sqrt[3]{xyz}}=\dfrac{3}{\dfrac{1}{2}}=6$.

By AM-HM we have $x+y+z\ge \dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$ so the intended expression becomes

$x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

Since $x,\,y$ and $z$ are positive real numbers and $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\ge 2\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}=6---(A)$, we can conclude by now that

$\begin{align*}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\\\ge 6+\dfrac{9}{6}\ge \dfrac{15}{2}---(B)\end{align*}$

Equality occurs when $\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{1}{2}$.


I know the answer is correct but---
step from (A)to (B) can you explain ?
 
Last edited:
Albert said:
My solution:
I know the answer is correct but---
step from (A)to (B) can you explain ?

Sorry Albert that I wasn't clear...

I will explain using the example function of $f(a)=a+\dfrac{9}{a}$, note that we can apply the AM-GM inequality to the function of $f$ when $a$ is positive to get $f(a)=a+\dfrac{9}{a}\ge 2(3)=6$. Equality happens when $a=3$.

And we know the function of $f$ is an increasing function beyond $a=3$. Since $a\ge 6$, the minimum of $f$ would then occur at $a=6$, so we get $f(a)_{min}=6+\dfrac{9}{6}=\dfrac{15}{2}$.
 
anemone said:
Sorry Albert that I wasn't clear...

I will explain using the example function of $f(a)=a+\dfrac{9}{a}$, note that we can apply the AM-GM inequality to the function of $f$ when $a$ is positive to get $f(a)=a+\dfrac{9}{a}\ge 2(3)=6$. Equality happens when $a=3$.

And we know the function of $f$ is an increasing function beyond $a=3$. Since $a\ge 6$, the minimum of $f$ would then occur at $a=6$, so we get $f(a)_{min}=6+\dfrac{9}{6}=\dfrac{15}{2}$.
many thanks! now I got it
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top