Find Min of x+y+z for Real x,y,z ≤ 3/2

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary

Discussion Overview

The discussion revolves around finding the minimum of the expression $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for positive real numbers $x$, $y$, and $z$ under the constraint that $x+y+z \leq \dfrac{3}{2}$. The focus is on mathematical reasoning and problem-solving techniques related to optimization.

Discussion Character

  • Mathematical reasoning, Homework-related

Main Points Raised

  • Participants are tasked with finding the minimum of a specific mathematical expression under a given constraint.
  • Some participants express confidence in their solutions but seek clarification on specific steps in their reasoning.
  • There are multiple posts reiterating the problem statement, indicating a focus on understanding rather than resolution.
  • One participant acknowledges a lack of clarity in their previous communication and seeks further explanation.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as participants are still working through the problem and seeking clarification on specific steps.

Contextual Notes

Some steps in the reasoning process are not fully explained, and there may be assumptions or dependencies on definitions that are not explicitly stated.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for all positive real $x,\,y$ and $z$ that satisfies the condition $x+y+z\le \dfrac{3}{2}$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for all positive real $x,\,y$ and $z$ that satisfies the condition $x+y+z\le \dfrac{3}{2}$.

$$x+y+z+\dfrac1x+\dfrac1y+\dfrac1z\ge\dfrac32+a$$ where $a$ is some non-negative constant.

$$x+y+z-\dfrac32+\dfrac1x+\dfrac1y+\dfrac1z\ge a$$

$$b=x+y+z-\dfrac32\implies-\dfrac32\lt b\le0$$

$$\dfrac1x+\dfrac1y+\dfrac1z\ge a+|b|$$

Applying the AM-GM inequality, we have $$\dfrac{\dfrac1x+\dfrac1y+\dfrac1z}{3}\ge\left(\dfrac{1}{xyz}\right)^{1/3}$$
hence $$\dfrac1x+\dfrac1y+\dfrac1z$$ is at a minimum when $x=y=z=\dfrac12$.

From this, $b=0$ and $a=6$, so the desired minimum is $6+\dfrac32=\dfrac{15}{2}$.
 
Great job, greg1313!:)

My solution:

Note that from AM-GM inequality we get $3\sqrt[3]{xyz}\le x+y+z\le \dfrac{3}{2}$, which translates to $\sqrt[3]{xyz}\le \dfrac{1}{2}$, we can conclude $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{3}{\sqrt[3]{xyz}}=\dfrac{3}{\dfrac{1}{2}}=6$.

By AM-HM we have $x+y+z\ge \dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$ so the intended expression becomes

$x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

Since $x,\,y$ and $z$ are positive real numbers and $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\ge 2\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}=6$, we can conclude by now that

$\begin{align*}x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}&\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\\&\ge 6+\dfrac{9}{6}\\&\ge \dfrac{15}{2}\end{align*}$

Equality occurs when $\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{1}{2}$.
 
My solution:
anemone said:
Note that from AM-GM inequality we get $3\sqrt[3]{xyz}\le x+y+z\le \dfrac{3}{2}$, which translates to $\sqrt[3]{xyz}\le \dfrac{1}{2}$, we can conclude $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{3}{\sqrt[3]{xyz}}=\dfrac{3}{\dfrac{1}{2}}=6$.

By AM-HM we have $x+y+z\ge \dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$ so the intended expression becomes

$x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

Since $x,\,y$ and $z$ are positive real numbers and $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\ge 2\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}=6---(A)$, we can conclude by now that

$\begin{align*}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\\\ge 6+\dfrac{9}{6}\ge \dfrac{15}{2}---(B)\end{align*}$

Equality occurs when $\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{1}{2}$.


I know the answer is correct but---
step from (A)to (B) can you explain ?
 
Last edited:
Albert said:
My solution:
I know the answer is correct but---
step from (A)to (B) can you explain ?

Sorry Albert that I wasn't clear...

I will explain using the example function of $f(a)=a+\dfrac{9}{a}$, note that we can apply the AM-GM inequality to the function of $f$ when $a$ is positive to get $f(a)=a+\dfrac{9}{a}\ge 2(3)=6$. Equality happens when $a=3$.

And we know the function of $f$ is an increasing function beyond $a=3$. Since $a\ge 6$, the minimum of $f$ would then occur at $a=6$, so we get $f(a)_{min}=6+\dfrac{9}{6}=\dfrac{15}{2}$.
 
anemone said:
Sorry Albert that I wasn't clear...

I will explain using the example function of $f(a)=a+\dfrac{9}{a}$, note that we can apply the AM-GM inequality to the function of $f$ when $a$ is positive to get $f(a)=a+\dfrac{9}{a}\ge 2(3)=6$. Equality happens when $a=3$.

And we know the function of $f$ is an increasing function beyond $a=3$. Since $a\ge 6$, the minimum of $f$ would then occur at $a=6$, so we get $f(a)_{min}=6+\dfrac{9}{6}=\dfrac{15}{2}$.
many thanks! now I got it
 
Last edited:

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K