Find Min of x+y+z for Real x,y,z ≤ 3/2

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary
SUMMARY

The minimum value of the expression \(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) for positive real numbers \(x, y, z\) constrained by \(x+y+z \leq \frac{3}{2}\) has been established through a detailed discussion. Participants confirmed the correctness of the solution provided by user greg1313, emphasizing the importance of clarity in the steps taken from point A to point B in the solution process. The collaborative nature of the discussion helped clarify complex steps, enhancing understanding among participants.

PREREQUISITES
  • Understanding of optimization problems in calculus
  • Familiarity with inequalities and constraints
  • Knowledge of basic algebraic manipulation
  • Experience with real number properties
NEXT STEPS
  • Study optimization techniques in constrained environments
  • Explore the method of Lagrange multipliers for similar problems
  • Learn about convex functions and their properties
  • Investigate the application of AM-GM inequality in optimization
USEFUL FOR

Mathematicians, students studying calculus or optimization, and anyone interested in solving constrained optimization problems.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for all positive real $x,\,y$ and $z$ that satisfies the condition $x+y+z\le \dfrac{3}{2}$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ for all positive real $x,\,y$ and $z$ that satisfies the condition $x+y+z\le \dfrac{3}{2}$.

$$x+y+z+\dfrac1x+\dfrac1y+\dfrac1z\ge\dfrac32+a$$ where $a$ is some non-negative constant.

$$x+y+z-\dfrac32+\dfrac1x+\dfrac1y+\dfrac1z\ge a$$

$$b=x+y+z-\dfrac32\implies-\dfrac32\lt b\le0$$

$$\dfrac1x+\dfrac1y+\dfrac1z\ge a+|b|$$

Applying the AM-GM inequality, we have $$\dfrac{\dfrac1x+\dfrac1y+\dfrac1z}{3}\ge\left(\dfrac{1}{xyz}\right)^{1/3}$$
hence $$\dfrac1x+\dfrac1y+\dfrac1z$$ is at a minimum when $x=y=z=\dfrac12$.

From this, $b=0$ and $a=6$, so the desired minimum is $6+\dfrac32=\dfrac{15}{2}$.
 
Great job, greg1313!:)

My solution:

Note that from AM-GM inequality we get $3\sqrt[3]{xyz}\le x+y+z\le \dfrac{3}{2}$, which translates to $\sqrt[3]{xyz}\le \dfrac{1}{2}$, we can conclude $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{3}{\sqrt[3]{xyz}}=\dfrac{3}{\dfrac{1}{2}}=6$.

By AM-HM we have $x+y+z\ge \dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$ so the intended expression becomes

$x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

Since $x,\,y$ and $z$ are positive real numbers and $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\ge 2\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}=6$, we can conclude by now that

$\begin{align*}x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}&\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\\&\ge 6+\dfrac{9}{6}\\&\ge \dfrac{15}{2}\end{align*}$

Equality occurs when $\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{1}{2}$.
 
My solution:
anemone said:
Note that from AM-GM inequality we get $3\sqrt[3]{xyz}\le x+y+z\le \dfrac{3}{2}$, which translates to $\sqrt[3]{xyz}\le \dfrac{1}{2}$, we can conclude $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{3}{\sqrt[3]{xyz}}=\dfrac{3}{\dfrac{1}{2}}=6$.

By AM-HM we have $x+y+z\ge \dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$ so the intended expression becomes

$x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

Since $x,\,y$ and $z$ are positive real numbers and $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\ge 2\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}=6---(A)$, we can conclude by now that

$\begin{align*}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{9}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\\\ge 6+\dfrac{9}{6}\ge \dfrac{15}{2}---(B)\end{align*}$

Equality occurs when $\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{1}{2}$.


I know the answer is correct but---
step from (A)to (B) can you explain ?
 
Last edited:
Albert said:
My solution:
I know the answer is correct but---
step from (A)to (B) can you explain ?

Sorry Albert that I wasn't clear...

I will explain using the example function of $f(a)=a+\dfrac{9}{a}$, note that we can apply the AM-GM inequality to the function of $f$ when $a$ is positive to get $f(a)=a+\dfrac{9}{a}\ge 2(3)=6$. Equality happens when $a=3$.

And we know the function of $f$ is an increasing function beyond $a=3$. Since $a\ge 6$, the minimum of $f$ would then occur at $a=6$, so we get $f(a)_{min}=6+\dfrac{9}{6}=\dfrac{15}{2}$.
 
anemone said:
Sorry Albert that I wasn't clear...

I will explain using the example function of $f(a)=a+\dfrac{9}{a}$, note that we can apply the AM-GM inequality to the function of $f$ when $a$ is positive to get $f(a)=a+\dfrac{9}{a}\ge 2(3)=6$. Equality happens when $a=3$.

And we know the function of $f$ is an increasing function beyond $a=3$. Since $a\ge 6$, the minimum of $f$ would then occur at $a=6$, so we get $f(a)_{min}=6+\dfrac{9}{6}=\dfrac{15}{2}$.
many thanks! now I got it
 
Last edited:

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K