MHB Find Minimum of Inequality Expression: 0<x<π/2

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion focuses on finding the minimum value of the expression $$\frac{\sin^2x+8\cos^2x+8\cos x+\sin x}{\sin x\cos x}$$ for the interval 0 < x < π/2. It is established that the minimum value is 17, which can be shown using inequalities rather than calculus. The transformation using $t = \tan\frac{x}{2}$ simplifies the expression, leading to the inequality that confirms the minimum. The minimum occurs when $\tan\frac{x}{2} = \frac{2}{3}$, corresponding to specific sine and cosine values derived from the Pythagorean triple (5, 12, 13). The findings highlight a clever approach to solving the problem through algebraic manipulation and inequality analysis.
Saitama
Messages
4,244
Reaction score
93
I am trying to find the minimum of the following expression:
$$\frac{\sin^2x+8\cos^2x+8\cos x+\sin x}{\sin x\cos x}\,\,\,,0<x<\frac{\pi}{2}$$
I know I can bash this with calculus but the expression has a nice minimum value (=17) which makes me think that it can be solved by use of some inequality though I have no idea about how to proceed.

Any help is appreciated. Thanks!
 
Last edited:
Mathematics news on Phys.org
Pranav said:
I am trying to find the minimum of the following expression:
$$\frac{\sin^2x+8\cos^2x+8\cos x+\sin x}{\sin x\cos x}\,\,\,,0<x<\frac{\pi}{2}$$
I know I can bash this with calculus but the expression has a nice minimum value (=17) which makes me think that it can be solved by use of some inequality though I have no idea about how to proceed.

Any help is appreciated. Thanks!
Let $t = \tan\frac x2$. Then $\sin x = \frac{2t}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$. We want to show that $\sin^2x+8\cos^2x+8\cos x+\sin x \geqslant 17\sin x\cos x$, or $\sin x(\sin x+1) + 8\cos x(\cos x+1) - 17 \sin x\cos x \geqslant0.$ In terms of $t$ (after multiplying through by $(1+t^2)^2$), that becomes $$2t(2t+ 1+t^2) + 8(1-t^2)(1-t^2 + 1+t^2) - 34t(1-t^2) \geqslant0,$$ $$t(1+t)^2 + 8(1-t^2) - 17t(1-t^2) \geqslant0.$$ That simplifies to $18t^3 - 6t^2 - 16t + 8\geqslant0$, or $9t^3 - 3t^2 - 8t + 4\geqslant0$, which in turn factorises as $(3t-2)^2(t+1) \geqslant0.$ But $t>0$ because $x$ lies between $0$ and $\frac\pi2$. So that last inequality is evidently true (with equality holding only when $t = \frac23$), and you can work backwards to conclude that the original inequality holds for all $x$ in that interval.

The minimum of $\frac{\sin^2x+8\cos^2x+8\cos x+\sin x}{\sin x\cos x}$ occurs when $\tan\frac x2 = \frac23$, at which point $\sin x = \frac{12}{13}$ and $\cos x = \frac5{13}$. So the question is somehow based on the Pythagorean triple $(5,12,13)$.
 
Opalg said:
Let $t = \tan\frac x2$. Then $\sin x = \frac{2t}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$. We want to show that $\sin^2x+8\cos^2x+8\cos x+\sin x \geqslant 17\sin x\cos x$, or $\sin x(\sin x+1) + 8\cos x(\cos x+1) - 17 \sin x\cos x \geqslant0.$ In terms of $t$ (after multiplying through by $(1+t^2)^2$), that becomes $$2t(2t+ 1+t^2) + 8(1-t^2)(1-t^2 + 1+t^2) - 34t(1-t^2) \geqslant0,$$ $$t(1+t)^2 + 8(1-t^2) - 17t(1-t^2) \geqslant0.$$ That simplifies to $18t^3 - 6t^2 - 16t + 8\geqslant0$, or $9t^3 - 3t^2 - 8t + 4\geqslant0$, which in turn factorises as $(3t-1)^2(t+1) \geqslant0.$ But $t>0$ because $x$ lies between $0$ and $\frac\pi2$. So that last inequality is evidently true (with equality holding only when $t = \frac23$), and you can work backwards to conclude that the original inequality holds for all $x$ in that interval.

The minimum of $\frac{\sin^2x+8\cos^2x+8\cos x+\sin x}{\sin x\cos x}$ occurs when $\tan\frac x2 = \frac23$, at which point $\sin x = \frac{12}{13}$ and $\cos x = \frac5{13}$. So the question is somehow based on the Pythagorean triple $(5,12,13)$.

This is nice! Thanks a lot Opalg! (Sun) (Bow)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
5
Views
1K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
1
Views
959
Replies
4
Views
1K
Replies
1
Views
4K
Replies
1
Views
1K
Back
Top