MHB Find Minimum of y: $y=2a+\sqrt{4a^2-8a+3}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of the function $y=2a+\sqrt{4a^2-8a+3}$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of the function $y=2a+\sqrt{4a^2-8a+3}$.
for $a<0$
if $a\rightarrow -\infty , \,\, f(a)\rightarrow 2$
if $ a\rightarrow 0^-,\,\,f(a)\rightarrow \sqrt 3$
for $a\geq 0$
by using $AP\geq GP$
if $4a^2=4a^2-8a+3$ then $a=\dfrac {3}{8}$
and $f(\dfrac {3}{8})=1.5$
for: $\dfrac {1}{2}<a<\dfrac {3}{2}$ we get :$y=f(a)$ undefined
$4a^2-8a+3\geq 0$
if :$4a^2-8a+3=0 ,$ then $a=\dfrac {1}{2}$ or $a=\dfrac {3}{2}$
and the minimum of the function =$2\times \dfrac {1}{2}=1\,\,(with \,\, a=\dfrac {1}{2})$
 
Last edited:
Solution of other:

Note that the function of $y$ is concave and continuous over the domain $\left(-\infty,\,\dfrac{1}{2}\right]\cup \left[\dfrac{3}{2},\,\infty\right)$, so it will have its minimum at anyone of the end points $-\infty,\,\dfrac{1}{2},\,\dfrac{3}{2},\,\infty$ and upon checking we get $y_{\text{min}}=2\left(\dfrac{1}{2}\right)+0=1$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top