MHB Find Real Roots of $\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Roots
Click For Summary
The equation to solve is $\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1$. The discussion focuses on finding the real roots of this equation. The approach involves simplifying the square roots and analyzing the expressions under the radicals. Participants share methods for isolating terms and squaring both sides to eliminate the square roots. The goal is to identify all possible values of x that satisfy the equation.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the real roots of the equation

$\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1 $
 
Mathematics news on Phys.org
My solution:

Let $u=\sqrt{x-1}$ and the equation becomes:

$$|u-2|+|u-3|=1$$

For which we find:

$$2\le u\le3$$

or:

$$5\le x\le10$$
 
Hello, kaliprasad!

Find the real roots: $\:\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\:=\:1$
We note that:
$\quad \begin{array}{ccccc}x + 3 - 4\sqrt{x-1} &=& (x-1) - 4\sqrt{x-1} + 4 &=& (\sqrt{x-1}-2)^2 \\ x+8 - 6\sqrt{x-1} &=& (x-1) - 6\sqrt{x-1} + 9 &=& (\sqrt{x-1} - 3)^2 \end{array}$

The equaton becomes: $\:\sqrt{(\sqrt{x-1}-2)^2} + \sqrt{(\sqrt{x-1}- 3)^2} \;=\;1$

$\quad \sqrt{x-1} - 2 + \sqrt{x-1}-3 \;=\;1 \quad\Rightarrow\quad 2\sqrt{x-1} \:=\:6 $

$\quad\sqrt{x-1} \:=\:3 \quad\Rightarrow\quad x-1 \:=\:9 \quad\Rightarrow\quad x \:=\:10$
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 45 ·
2
Replies
45
Views
5K
Replies
2
Views
1K