MHB Find Remainder of $2^{100}-1$ Divided by 1000

  • Thread starter Thread starter Amad27
  • Start date Start date
Click For Summary
The discussion focuses on finding the remainder of \(2^{100} - 1\) when divided by 1000. It establishes that \(2^{100} \equiv 1 \pmod{125}\) and \(2^{100} \equiv 0 \pmod{8}\), leading to the conclusion that \(2^{100} \equiv 376 \pmod{1000}\). The sum of all possible remainders when powers of 2 are divided by 1000 is considered, with the importance of including additional powers like \(2^{101}\) and \(2^{102}\) noted. The discussion also touches on generalizing the findings to higher powers of 10. Ultimately, the conversation emphasizes the cyclical nature of powers of 2 in modular arithmetic.
Amad27
Messages
409
Reaction score
1
>Let $R$ be the set of all possible remainders when a number of the form $2^n$, $n$ a nonnegative integer, is divided by $1000$. Let $S$ be the sum of all elements in $R$. Find the remainder when $S$ is divided by $1000$.

Here is my working:$2^{\phi(x)} \equiv 1 \pmod{x}$ such that $(2, x) = 1$. So let $x = 125$.

$2^{100} \equiv 1 \pmod{125}$ and consider the cycle that:

$2^{100k + n} \equiv 2^n \pmod{125}$.

$\forall n \ge 3 \implies 2^n \equiv 0 \pmod{8}$.

So I got:

$S = \sum_{k=1}^{99} 2^k = 2^{100} - 1$ but the real answer also considers $2^{100, 101, 102}$ why? $2^{100} \equiv 1 \pmod{125}, 2^{100} \equiv 0 \pmod{8} \implies 2^{100} \equiv 376 \pmod{1000}$.

And then why do they just stop at $102$, what about $103$ etc??
 
Mathematics news on Phys.org
Hi,
As mathematicians love to do, I generalized your statement to any power of 10 greater than 0. I hope the following answers your questions; in particular the text in red shows why the set of remainders is exactly what you wondered about.

View attachment 4587
View attachment 4588
 

Attachments

  • johng003.png
    johng003.png
    14.6 KB · Views: 103
  • johng004.png
    johng004.png
    5.4 KB · Views: 108
Last edited by a moderator:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
817
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K