MHB Find Remainder of $2^{100}-1$ Divided by 1000

  • Thread starter Thread starter Amad27
  • Start date Start date
Click For Summary
The discussion focuses on finding the remainder of \(2^{100} - 1\) when divided by 1000. It establishes that \(2^{100} \equiv 1 \pmod{125}\) and \(2^{100} \equiv 0 \pmod{8}\), leading to the conclusion that \(2^{100} \equiv 376 \pmod{1000}\). The sum of all possible remainders when powers of 2 are divided by 1000 is considered, with the importance of including additional powers like \(2^{101}\) and \(2^{102}\) noted. The discussion also touches on generalizing the findings to higher powers of 10. Ultimately, the conversation emphasizes the cyclical nature of powers of 2 in modular arithmetic.
Amad27
Messages
409
Reaction score
1
>Let $R$ be the set of all possible remainders when a number of the form $2^n$, $n$ a nonnegative integer, is divided by $1000$. Let $S$ be the sum of all elements in $R$. Find the remainder when $S$ is divided by $1000$.

Here is my working:$2^{\phi(x)} \equiv 1 \pmod{x}$ such that $(2, x) = 1$. So let $x = 125$.

$2^{100} \equiv 1 \pmod{125}$ and consider the cycle that:

$2^{100k + n} \equiv 2^n \pmod{125}$.

$\forall n \ge 3 \implies 2^n \equiv 0 \pmod{8}$.

So I got:

$S = \sum_{k=1}^{99} 2^k = 2^{100} - 1$ but the real answer also considers $2^{100, 101, 102}$ why? $2^{100} \equiv 1 \pmod{125}, 2^{100} \equiv 0 \pmod{8} \implies 2^{100} \equiv 376 \pmod{1000}$.

And then why do they just stop at $102$, what about $103$ etc??
 
Mathematics news on Phys.org
Hi,
As mathematicians love to do, I generalized your statement to any power of 10 greater than 0. I hope the following answers your questions; in particular the text in red shows why the set of remainders is exactly what you wondered about.

View attachment 4587
View attachment 4588
 

Attachments

  • johng003.png
    johng003.png
    14.6 KB · Views: 107
  • johng004.png
    johng004.png
    5.4 KB · Views: 114
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
Replies
1
Views
839
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K