MHB Find Remainder of $2^{100}-1$ Divided by 1000

  • Thread starter Thread starter Amad27
  • Start date Start date
Amad27
Messages
409
Reaction score
1
>Let $R$ be the set of all possible remainders when a number of the form $2^n$, $n$ a nonnegative integer, is divided by $1000$. Let $S$ be the sum of all elements in $R$. Find the remainder when $S$ is divided by $1000$.

Here is my working:$2^{\phi(x)} \equiv 1 \pmod{x}$ such that $(2, x) = 1$. So let $x = 125$.

$2^{100} \equiv 1 \pmod{125}$ and consider the cycle that:

$2^{100k + n} \equiv 2^n \pmod{125}$.

$\forall n \ge 3 \implies 2^n \equiv 0 \pmod{8}$.

So I got:

$S = \sum_{k=1}^{99} 2^k = 2^{100} - 1$ but the real answer also considers $2^{100, 101, 102}$ why? $2^{100} \equiv 1 \pmod{125}, 2^{100} \equiv 0 \pmod{8} \implies 2^{100} \equiv 376 \pmod{1000}$.

And then why do they just stop at $102$, what about $103$ etc??
 
Mathematics news on Phys.org
Hi,
As mathematicians love to do, I generalized your statement to any power of 10 greater than 0. I hope the following answers your questions; in particular the text in red shows why the set of remainders is exactly what you wondered about.

View attachment 4587
View attachment 4588
 

Attachments

  • johng003.png
    johng003.png
    14.6 KB · Views: 98
  • johng004.png
    johng004.png
    5.4 KB · Views: 98
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top