MHB Find the 79th term in the sequence

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Sequence Term
Click For Summary
The discussion focuses on finding the 79th term in the arithmetic sequence 7, -4, -1. The formula used is a_n = a_1 + (n-1)d, with a_1 set to -7 and d as -3. The calculation shows that a_{79} equals 227. A participant points out a typo in the formula, clarifying it should be a_n = a_1 + (n-1)d. The thread concludes with the corrected formula being acknowledged.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the 79th term in the sequence - 7, - 4, - 1
$$a_n=a_1+\left(a_n-1 \right)d$$
$$n=79,\ \ a_1=-7, \ \ d=-3$$
$$a_{79}=-7+\left(79-1\right)\left(3\right)=227$$

I just followed an example?
 
Mathematics news on Phys.org
karush said:
Find the 79th term in the sequence - 7, - 4, - 1
$$a_n=a_1+\left(a_n-1 \right)d$$
$$n=79,\ \ a_1=-7, \ \ d=-3$$
$$a_{79}=-7+\left(79-1\right)\left(3\right)=227$$

I just followed an example?

There is a typo
$a_n=a_1+\left(n-1 \right)d$

rest is OK
 
Gotcha
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K