Find the general formula of the recurrence relation

Click For Summary

Discussion Overview

The discussion revolves around finding the general formula for the recurrence relation defined by \( a_k = 3^k - a_{k-1} \) with the initial condition \( a_0 = 1 \). Participants explore various approaches to derive the formula, including pattern recognition, induction, and the use of characteristic roots.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants express confusion about how to derive the formula \( a_k = 3^k - 3^{k-1} + 3^{k-2} - \dots + (-1)^k \) from the recurrence relation.
  • Others suggest that the pattern observed could be proven by induction, although they encounter difficulties verifying base cases.
  • A participant proposes using characteristic roots and the method of undetermined coefficients to find a particular solution, leading to a general solution of the form \( a_k = \frac{(-1)^k + 3^{k+1}}{4} \).
  • Some participants question the correctness of their calculations and the assumptions made during the derivation process.
  • There is a discussion about whether the sequence can be expressed as a geometric series, with differing opinions on how to formulate it for even and odd \( k \).
  • A later reply suggests a unified expression for \( a_k \) that does not depend on the parity of \( k \), proposing \( a_k = (-1)^k \sum_{i=0}^k (-3)^i \).
  • Participants also discuss the implications of their findings and how they relate to previously posted solutions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the derivation of the general formula, as multiple approaches and interpretations are presented. Some participants agree on certain expressions while others challenge them, indicating ongoing debate and uncertainty.

Contextual Notes

Limitations include unresolved mathematical steps and differing interpretations of the recurrence relation's implications. The discussion reflects various assumptions about the sequence's behavior and the validity of proposed formulas.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Suppose that we have the recurrence relation $a_k=3^k-a_{k-1}, a_0=1$.

By replacing the terms of the sequence we get that it is equal to $a_k=3^k-3^{k+1}+3^{k+2}-a_{k-3}$.

How do we get that it is equal to $a_k=3^{k}-3^{k-1}+3^{k-2}- \dots+ (-1)^k$ ? :unsure:

Also, why is the latter equal to $(-1)^k (3^k+3^{k-1}+\dots+1)$ ? :unsure:
 
Physics news on Phys.org
evinda said:
Suppose that we have the recurrence relation $a_k=3^k-a_{k-1}, a_0=1$.

By replacing the terms of the sequence we get that it is equal to $a_k=3^k-3^{k+1}+3^{k+2}-a_{k-3}$.

Hey evinda!

Shouldn't that be $a_k=3^k-3^{k\color{red}{-1}}+3^{k\color{red}{-2}}-a_{k-3}$? (Worried)

evinda said:
How do we get that it is equal to $a_k=3^{k}-3^{k-1}+3^{k-2}- \dots+ (-1)^k$ ?

We can 'guess' by seeing the pattern and assuming it extends all the way to $a_0$, which is $1$.
And we can prove it by induction, can't we? 🤔

evinda said:
Also, why is the latter equal to $(-1)^k (3^k+3^{k-1}+\dots+1)$ ?
It isn't. (Shake)
 
I would look at the characteristic root and from that observe the homogeneous solution is:

$$h_k=c_1(-1)^k$$

Next, I would use the method of undetermined coefficients to state the particular solution is of the form:

$$p_k=A3^k+B$$

Substitution into the recurrence yields:

$$A3^k+B+A3^{k-1}+B=3^k$$

$$4A3^{k-1}+2B=3\cdot3^{k-1}+0$$'

'$$A=\frac{3}{4},\,B=0$$

And so the general solution is:

$$a_k=h_k+p_k=c_1(-1)^k+\frac{1}{4}3^{k+1}$$

We are told:

$$a_0=c_1+\frac{3}{4}=1\implies c_1=\frac{1}{4}$$

Hence:

$$a_k=\frac{(-1)^k+3^{k+1}}{4}$$
 
Klaas van Aarsen said:
Hey evinda!

Shouldn't that be $a_k=3^k-3^{k\color{red}{-1}}+3^{k\color{red}{-2}}-a_{k-3}$? (Worried)

Oh yes, right! (Nod)

Klaas van Aarsen said:
We can 'guess' by seeing the pattern and assuming it extends all the way to $a_0$, which is $1$.
And we can prove it by induction, can't we? 🤔

At the base case, for $k=1$, $a_1=3-a_0=2$.

$3^1-3^{1-1}+(-1)^1=1$... These are not equal... Have I done something wrong? o_O

Then assuming that $a_m=3^m-3^{m-1}+3^{m-2}+\dots+ (-1)^m$, we get that

$$a_{m+1}=3^{m+1}-a_m= \dots= 3^m-3^{m-1}- \dots+(-1)^m$$

which again is not the resired result... I am doing something wrong? :unsure:
Klaas van Aarsen said:
It isn't. (Shake)

Ok... :unsure::unsure::unsure: So after getting the expression for $a_k$, we will discuss it (Wasntme)(Blush)
 
evinda said:
At the base case, for $k=1$, $a_1=3-a_0=2$.

$3^1-3^{1-1}+(-1)^1=1$... These are not equal... Have I done something wrong?

The base case for $k=0$ is $a_0=(-1)^0=1$, which is correct, isn't it? 🤔

The case for $k=1$ is $a_1=3^1+(-1)^1=2$.
And we expect $a_1=3^1-a_0=2$, so they match don't they? 🤔

evinda said:
Then assuming that $a_m=3^m-3^{m-1}+3^{m-2}+\dots+ (-1)^m$, we get that

$$a_{m+1}=3^{m+1}-a_m= \dots= 3^m-3^{m-1}- \dots+(-1)^m$$

which again is not the resired result... I am doing something wrong?

Shouldn't it be:
$$a_{m+1}=3^{m+1}-a_m= \dots= 3^{m\color{red}{+1}}-(3^m-3^{m-1}- \dots+(-1)^m)=3^{m+1}-3^m+3^{m-1}+\ldots-(-1)^m$$
? 🤔
 
Klaas van Aarsen said:
The base case for $k=0$ is $a_0=(-1)^0=1$, which is correct, isn't it? 🤔

The case for $k=1$ is $a_1=3^1+(-1)^1=2$.
And we expect $a_1=3^1-a_0=2$, so they match don't they? 🤔

I haven't understood how we check the cases $k=0,1$... :unsure:For example for $k=0$ why at the formula $a_k=3^k-3^{k-1}+3^{k-2}- \dots +(-1)^k$ don't we take also into consideration the term $3^0$, i.e. why isn't the result $3^0+(-1)^0$ ? o_O Could you explain it to me? (Wasntme)

Klaas van Aarsen said:
Shouldn't it be:
$$a_{m+1}=3^{m+1}-a_m= \dots= 3^{m\color{red}{+1}}-(3^m-3^{m-1}- \dots+(-1)^m)=3^{m+1}-3^m+3^{m-1}+\ldots-(-1)^m$$
? 🤔

Oh yes, right! (Nod)
 
evinda said:
I haven't understood how we check the cases $k=0,1$...

For example for $k=0$ why at the formula $a_k=3^k-3^{k-1}+3^{k-2}- \dots +(-1)^k$ don't we take also into consideration the term $3^0$, i.e. why isn't the result $3^0+(-1)^0$ ? Could you explain it to me?
Consider the case for $k=3$:
$$a_3 = 3^3 - 3^2 + \ldots + (-1)^3$$
Doesn't it make sense that its proper full expression is:
$$a_3 = 3^3 - 3^2 + 3^1 - 3^0$$
? 🤔

If so, then for $k=0$, we only get the zero order term. That is, $a_0=3^0$.
And for $k=1$, we get the first order term together with the zero order term. That is, $a_1=3^1 - 3^0$. 🤔
 
Klaas van Aarsen said:
Consider the case for $k=3$:
$$a_3 = 3^3 - 3^2 + \ldots + (-1)^3$$
Doesn't it make sense that its proper full expression is:
$$a_3 = 3^3 - 3^2 + 3^1 - 3^0$$
? 🤔

If so, then for $k=0$, we only get the zero order term. That is, $a_0=3^0$.
And for $k=1$, we get the first order term together with the zero order term. That is, $a_1=3^1 - 3^0$. 🤔

I see! (Nod) And how can we get from this a general formula for the terms of the sequence? :unsure:
 
evinda said:
I see! And how can we get from this a general formula for the terms of the sequence?
It's a geometric sequence isn't it? 🤔
 
  • #10
Klaas van Aarsen said:
It's a geometric sequence isn't it? 🤔

We have that $a_k=\sum_{i=0}^k (-3)^k$ when $k$ is even and $a_k=-\sum_{i=0}^k (-3)^k$ when $k$ is odd, right? :unsure:

If so, can we write also a general equality for $a_k$ that does not depend on whether $k$ is even or odd? :unsure::unsure:
 
  • #11
evinda said:
We have that $a_k=\sum_{i=0}^k (-3)^k$ when $k$ is even and $a_k=-\sum_{i=0}^k (-3)^k$ when $k$ is odd, right?

If so, can we write also a general equality for $a_k$ that does not depend on whether $k$ is even or odd?
Sure.
How about:
$$a_k=(-1)^k\sum_{i=0}^k (-3)^k$$
? 🤔
 
  • #12
Klaas van Aarsen said:
Sure.
How about:
$$a_k=(-1)^k\sum_{i=0}^k (-3)^k$$
? 🤔

Using the fact that $\sum_{k=0}^{n-1} (ar^k)=a \left( \frac{1-r^n}{1-r}\right)$, we get that $\sum_{i=0}^k (-3)^i=\frac{1-(-3)^{k+1}}{4}$ and so we deduce that

$$a_k=\frac{(-1)^k+3^{k+1}}{4}.$$

Right? :)
 
  • #13
evinda said:
Using the fact that $\sum_{k=0}^{n-1} (ar^k)=a \left( \frac{1-r^n}{1-r}\right)$, we get that $\sum_{i=0}^k (-3)^i=\frac{1-(-3)^{k+1}}{4}$ and so we deduce that

$$a_k=\frac{(-1)^k+3^{k+1}}{4}.$$

Right?
Yep.
And that is what MarkFL already posted. (Nod)
 
  • #14
Oh yes, right! Thank you both! (Blush)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
10
Views
1K