MHB Find the limit of a sequence II

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit Sequence
AI Thread Summary
The sequence defined by \( x_0=2 \) and \( x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}} \) converges to \( \sqrt{2} \) when starting with a positive initial value. The analysis reveals two attractive fixed points at \( x=\sqrt{2} \) and \( x=-\sqrt{2} \), with convergence criteria satisfied for both. For any initial value less than zero, the sequence converges to \( -\sqrt{2} \). The Newton-Raphson method is mentioned as a technique that converges to these roots based on the initial value. Overall, the limit of the sequence is determined to be \( \sqrt{2} \) for positive starting values.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let the sequence ${x_n}$ be defined by $x_0=2$ and $x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1$.
Find the limit.
 
Mathematics news on Phys.org
lfdahl said:
Let the sequence ${x_n}$ be defined by $x_0=2$ and $x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1$.
Find the limit.

[sp]The solving procedure for this type of problems is illustrated in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2492

Writing the difference equation in the form...

$\displaystyle \Delta_{n} = a_{n+1} - a_{n} = \frac{1}{a_{n}} - \frac{a_{n}}{2} = f(a_{n})\ (1)$

... we discover that f(x) has two attractive fixed points in $x= \sqrt{2}$ and $x=- \sqrt{2}$. For both the fixed points the criteria for convergence are satisfied, so that for any $a_{0}< 0$ the sequence converges to $- \sqrt{2}$ and for any $a_{0}>0$ the sequence converges to $\sqrt{2}$...[/sp]

Kind regards

$\chi$ $\sigma$
 
lfdahl said:
Let the sequence ${x_n}$ be defined by $x_0=2$ and $x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1$.
Find the limit.

I recognize this one. ;)

Let $f(x)=x^2-2$.
Then the root is approximated using the Newton-Raphson method with:
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}
= x_{n-1} - \frac{x_{n-1}^2-2}{2x_{n-1}}
= \frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$$
In other words, the limit is $\sqrt 2$.
 
I like Serena said:
I recognize this one. ;)

Let $f(x)=x^2-2$.
Then the root is approximated using the Newton-Raphson method with:
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}
= x_{n-1} - \frac{x_{n-1}^2-2}{2x_{n-1}}
= \frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$$
In other words, the limit is $\sqrt 2$.

In fact the equation $f(x)=x^{2} - 2 = 0$ has two solutions, $x=\sqrt{2}$ and $x=-\sqrt{2}$, and the Newton-Raphson method converges to the positive or negative root according to the initial value $x_{0}$...

Kind regards

$\chi$ $\sigma$
 
Good job, well done chisigma and I like Serena! Thankyou very much for two different and very clever solutions indeed!:cool:

Here is an alternative approach by other:

We assume that the limit \[L=\lim_{n \to \infty }\left \{ x_n \right \}\] exists. Then
$x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1 \Rightarrow $

\[x_nx_{n-1}=\frac{x_{n-1}^{2}}{2}+1 \: \: \: for \: \: \: n\geq 1 \Rightarrow \lim_{n \to \infty }\left \{ x_nx_{n-1} \right \}=\lim_{n \to \infty }\frac{x_{n-1}^{2}}{2}+1 \Rightarrow L^2 = \frac{L^2}{2}+1 \Rightarrow L^2 = 2\]Therefore $L = \sqrt{2}$ or $L = -\sqrt{2}$.$x_0 = 2 > 0$ and if $x_n > 0$ then $x_{n+1}= \frac{x_n}{2}+\frac{1}{x_n} > 0 + 0 = 0$. Hence, by induction $x_n > 0$ for all $n \ge 0$. It follows that $L=\lim_{n \to \infty }\left \{ x_n \right \} \geq 0$. We conclude that the limit is $\sqrt{2}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top