MHB Find the limit of a sequence II

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit Sequence
AI Thread Summary
The sequence defined by \( x_0=2 \) and \( x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}} \) converges to \( \sqrt{2} \) when starting with a positive initial value. The analysis reveals two attractive fixed points at \( x=\sqrt{2} \) and \( x=-\sqrt{2} \), with convergence criteria satisfied for both. For any initial value less than zero, the sequence converges to \( -\sqrt{2} \). The Newton-Raphson method is mentioned as a technique that converges to these roots based on the initial value. Overall, the limit of the sequence is determined to be \( \sqrt{2} \) for positive starting values.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let the sequence ${x_n}$ be defined by $x_0=2$ and $x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1$.
Find the limit.
 
Mathematics news on Phys.org
lfdahl said:
Let the sequence ${x_n}$ be defined by $x_0=2$ and $x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1$.
Find the limit.

[sp]The solving procedure for this type of problems is illustrated in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2492

Writing the difference equation in the form...

$\displaystyle \Delta_{n} = a_{n+1} - a_{n} = \frac{1}{a_{n}} - \frac{a_{n}}{2} = f(a_{n})\ (1)$

... we discover that f(x) has two attractive fixed points in $x= \sqrt{2}$ and $x=- \sqrt{2}$. For both the fixed points the criteria for convergence are satisfied, so that for any $a_{0}< 0$ the sequence converges to $- \sqrt{2}$ and for any $a_{0}>0$ the sequence converges to $\sqrt{2}$...[/sp]

Kind regards

$\chi$ $\sigma$
 
lfdahl said:
Let the sequence ${x_n}$ be defined by $x_0=2$ and $x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1$.
Find the limit.

I recognize this one. ;)

Let $f(x)=x^2-2$.
Then the root is approximated using the Newton-Raphson method with:
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}
= x_{n-1} - \frac{x_{n-1}^2-2}{2x_{n-1}}
= \frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$$
In other words, the limit is $\sqrt 2$.
 
I like Serena said:
I recognize this one. ;)

Let $f(x)=x^2-2$.
Then the root is approximated using the Newton-Raphson method with:
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}
= x_{n-1} - \frac{x_{n-1}^2-2}{2x_{n-1}}
= \frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$$
In other words, the limit is $\sqrt 2$.

In fact the equation $f(x)=x^{2} - 2 = 0$ has two solutions, $x=\sqrt{2}$ and $x=-\sqrt{2}$, and the Newton-Raphson method converges to the positive or negative root according to the initial value $x_{0}$...

Kind regards

$\chi$ $\sigma$
 
Good job, well done chisigma and I like Serena! Thankyou very much for two different and very clever solutions indeed!:cool:

Here is an alternative approach by other:

We assume that the limit \[L=\lim_{n \to \infty }\left \{ x_n \right \}\] exists. Then
$x_n=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$ for $n \ge 1 \Rightarrow $

\[x_nx_{n-1}=\frac{x_{n-1}^{2}}{2}+1 \: \: \: for \: \: \: n\geq 1 \Rightarrow \lim_{n \to \infty }\left \{ x_nx_{n-1} \right \}=\lim_{n \to \infty }\frac{x_{n-1}^{2}}{2}+1 \Rightarrow L^2 = \frac{L^2}{2}+1 \Rightarrow L^2 = 2\]Therefore $L = \sqrt{2}$ or $L = -\sqrt{2}$.$x_0 = 2 > 0$ and if $x_n > 0$ then $x_{n+1}= \frac{x_n}{2}+\frac{1}{x_n} > 0 + 0 = 0$. Hence, by induction $x_n > 0$ for all $n \ge 0$. It follows that $L=\lim_{n \to \infty }\left \{ x_n \right \} \geq 0$. We conclude that the limit is $\sqrt{2}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top