Find the maximum and minimum of an expression

Click For Summary

Discussion Overview

The discussion centers around finding the maximum and minimum values of the expression $x^3+y^3+xy(x^2+y^2$ under the constraint that $x$ and $y$ are non-negative real numbers satisfying $x+y+xy=3$. The scope includes mathematical reasoning and potential solution approaches.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Multiple participants have posed the same problem regarding the expression and the given constraint, indicating a focus on exploring different methods to solve it.
  • One participant, kaliprasad, received positive feedback for their contribution, suggesting they may have provided a noteworthy approach or solution.
  • Another participant, anemone, has mentioned providing a method, indicating that there are various approaches being discussed.
  • There is a mention of a "not a rigorous solution" from one participant, which suggests that some contributions may lack formal proof or completeness.

Areas of Agreement / Disagreement

There is no clear consensus on a solution or method, as multiple participants have repeated the problem and different approaches are being explored without resolution.

Contextual Notes

Some contributions may lack rigor, and the discussion appears to be in an exploratory phase with various methods being proposed.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum and minimum of $x^3+y^3+xy(x^2+y^2)$ given $x,\,y$ are two non-negative real numbers that satisfy $x+y+xy=3$.
 
Mathematics news on Phys.org
anemone said:
Find the maximum and minimum of $x^3+y^3+xy(x^2+y^2)$ given $x,\,y$ are two non-negative real numbers that satisfy $x+y+xy=3$.
not a rigorous solution but
we are given $x+y + xy = 3$
or $(1+x)(1+y) = 4$
we have given expression
$x^3(1+y)+y^3(1+x)$
the given condition and the expression both are symmetric in x and y so extremum occurs at $x = y = 1$
so given expression 4
other extemum is at x or y =inifinte but that makes the other value to be -ve so we have
$x=0,y=3$ or $x=3,y=0$ giving $x^3+y^3+xy(x^2+y^2)=27$
so minumum value = 4 and maximum = 27
 
anemone said:
Find the maximum and minimum of $x^3+y^3+xy(x^2+y^2)$ given $x,\,y$ are two non-negative real numbers that satisfy $x+y+xy=3$.

$$\begin{align*}f(x,y)=x^3+y^3+xy(x^2+y^2)&=(x+y)(x^2-xy+y^2)+xy(x+y)^2-2x^2y^2 \\
&=(x+y)[x^2-xy+y^2+xy(x+y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(1-x-y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(xy-2)]-2x^2y^2 \\
&=(x+y)(x^2+2xy+y^2-x^2y^2)-2x^2y^2 \\
&=(3-xy)[(3-xy)^2-x^2y^2]-2x^2y^2 \\
&=(3-xy)(9-6xy)-2x^2y^2 \\
&=27-18xy-9xy+4x^2y^2 \\
&=27-xy(27-4xy)\qquad(1)\end{align*}$$

$$x+y+xy=3\implies x=\dfrac{3-y}{y+1}$$
$$xy=\dfrac{3y-y^2}{y+1}=1-\dfrac{y^2-2y+1}{y+1}=1-\dfrac{(y-1)^2}{y+1}$$

Hence $$0\le xy\le1\qquad(2)$$

$$(1)\Leftrightarrow(2)\implies\max(f(x,y))=27$$

I don't have a proof for the minimum without using symmetry of variables.
 
Very well done, kaliprasad!:cool:

greg1313 said:
$$\begin{align*}f(x,y)=x^3+y^3+xy(x^2+y^2)&=(x+y)(x^2-xy+y^2)+xy(x+y)^2-2x^2y^2 \\
&=(x+y)[x^2-xy+y^2+xy(x+y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(1-x-y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(xy-2)]-2x^2y^2 \\
&=(x+y)(x^2+2xy+y^2-x^2y^2)-2x^2y^2 \\
&=(3-xy)[(3-xy)^2-x^2y^2]-2x^2y^2 \\
&=(3-xy)(9-6xy)-2x^2y^2 \\
&=27-18xy-9xy+4x^2y^2 \\
&=27-xy(27-4xy)\qquad(1)\end{align*}$$

$$x+y+xy=3\implies x=\dfrac{3-y}{y+1}$$
$$xy=\dfrac{3y-y^2}{y+1}=1-\dfrac{y^2-2y+1}{y+1}=1-\dfrac{(y-1)^2}{y+1}$$

Hence $$0\le xy\le1\qquad(2)$$

$$(1)\Leftrightarrow(2)\implies\max(f(x,y))=27$$

I don't have a proof for the minimum without using symmetry of variables.

Hi greg1313, thank you for participating and thank you for providing us the well-written solution!
Note that since $P=27-xy(27-4xy)$ is concave up (decreasing) function on $0\le xy\le1$, we have the minimum of $P$ at $xy=1$, so $P_{\text{minimum}}=27-1(27-4)=4$.:)
 
Last edited:
greg1313 said:
$$\begin{align*}f(x,y)=x^3+y^3+xy(x^2+y^2)&=(x+y)(x^2-xy+y^2)+xy(x+y)^2-2x^2y^2 \\
&=(x+y)[x^2-xy+y^2+xy(x+y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(1-x-y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(xy-2)]-2x^2y^2 \\
&=(x+y)(x^2+2xy+y^2-x^2y^2)-2x^2y^2 \\
&=(3-xy)[(3-xy)^2-x^2y^2]-2x^2y^2 \\
&=(3-xy)(9-6xy)-2x^2y^2 \\
&=27-18xy-9xy+4x^2y^2 \\
&=27-xy(27-4xy)\qquad(1)\end{align*}$$

$$x+y+xy=3\implies x=\dfrac{3-y}{y+1}$$
$$xy=\dfrac{3y-y^2}{y+1}=1-\dfrac{y^2-2y+1}{y+1}=1-\dfrac{(y-1)^2}{y+1}$$

Hence $$0\le xy\le1\qquad(2)$$

$$(1)\Leftrightarrow(2)\implies\max(f(x,y))=27$$

I don't have a proof for the minimum without using symmetry of variables.

anemone has provided a method
here is my approach algebraically

$4x^2y^2-27x+27= (2xy-\dfrac{27}{2})^2 + 27 - (\dfrac{27}{2})^2$
the value is minimum when $xy = \dfrac{27}{4}$ which is > xy so as large as possible for xy which is 1
 

Similar threads

Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K