MHB Find the maximum and minimum of an expression

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum and minimum of $x^3+y^3+xy(x^2+y^2)$ given $x,\,y$ are two non-negative real numbers that satisfy $x+y+xy=3$.
 
Mathematics news on Phys.org
anemone said:
Find the maximum and minimum of $x^3+y^3+xy(x^2+y^2)$ given $x,\,y$ are two non-negative real numbers that satisfy $x+y+xy=3$.
not a rigorous solution but
we are given $x+y + xy = 3$
or $(1+x)(1+y) = 4$
we have given expression
$x^3(1+y)+y^3(1+x)$
the given condition and the expression both are symmetric in x and y so extremum occurs at $x = y = 1$
so given expression 4
other extemum is at x or y =inifinte but that makes the other value to be -ve so we have
$x=0,y=3$ or $x=3,y=0$ giving $x^3+y^3+xy(x^2+y^2)=27$
so minumum value = 4 and maximum = 27
 
anemone said:
Find the maximum and minimum of $x^3+y^3+xy(x^2+y^2)$ given $x,\,y$ are two non-negative real numbers that satisfy $x+y+xy=3$.

$$\begin{align*}f(x,y)=x^3+y^3+xy(x^2+y^2)&=(x+y)(x^2-xy+y^2)+xy(x+y)^2-2x^2y^2 \\
&=(x+y)[x^2-xy+y^2+xy(x+y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(1-x-y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(xy-2)]-2x^2y^2 \\
&=(x+y)(x^2+2xy+y^2-x^2y^2)-2x^2y^2 \\
&=(3-xy)[(3-xy)^2-x^2y^2]-2x^2y^2 \\
&=(3-xy)(9-6xy)-2x^2y^2 \\
&=27-18xy-9xy+4x^2y^2 \\
&=27-xy(27-4xy)\qquad(1)\end{align*}$$

$$x+y+xy=3\implies x=\dfrac{3-y}{y+1}$$
$$xy=\dfrac{3y-y^2}{y+1}=1-\dfrac{y^2-2y+1}{y+1}=1-\dfrac{(y-1)^2}{y+1}$$

Hence $$0\le xy\le1\qquad(2)$$

$$(1)\Leftrightarrow(2)\implies\max(f(x,y))=27$$

I don't have a proof for the minimum without using symmetry of variables.
 
Very well done, kaliprasad!:cool:

greg1313 said:
$$\begin{align*}f(x,y)=x^3+y^3+xy(x^2+y^2)&=(x+y)(x^2-xy+y^2)+xy(x+y)^2-2x^2y^2 \\
&=(x+y)[x^2-xy+y^2+xy(x+y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(1-x-y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(xy-2)]-2x^2y^2 \\
&=(x+y)(x^2+2xy+y^2-x^2y^2)-2x^2y^2 \\
&=(3-xy)[(3-xy)^2-x^2y^2]-2x^2y^2 \\
&=(3-xy)(9-6xy)-2x^2y^2 \\
&=27-18xy-9xy+4x^2y^2 \\
&=27-xy(27-4xy)\qquad(1)\end{align*}$$

$$x+y+xy=3\implies x=\dfrac{3-y}{y+1}$$
$$xy=\dfrac{3y-y^2}{y+1}=1-\dfrac{y^2-2y+1}{y+1}=1-\dfrac{(y-1)^2}{y+1}$$

Hence $$0\le xy\le1\qquad(2)$$

$$(1)\Leftrightarrow(2)\implies\max(f(x,y))=27$$

I don't have a proof for the minimum without using symmetry of variables.

Hi greg1313, thank you for participating and thank you for providing us the well-written solution!
Note that since $P=27-xy(27-4xy)$ is concave up (decreasing) function on $0\le xy\le1$, we have the minimum of $P$ at $xy=1$, so $P_{\text{minimum}}=27-1(27-4)=4$.:)
 
Last edited:
greg1313 said:
$$\begin{align*}f(x,y)=x^3+y^3+xy(x^2+y^2)&=(x+y)(x^2-xy+y^2)+xy(x+y)^2-2x^2y^2 \\
&=(x+y)[x^2-xy+y^2+xy(x+y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(1-x-y)]-2x^2y^2 \\
&=(x+y)[x^2+y^2-xy(xy-2)]-2x^2y^2 \\
&=(x+y)(x^2+2xy+y^2-x^2y^2)-2x^2y^2 \\
&=(3-xy)[(3-xy)^2-x^2y^2]-2x^2y^2 \\
&=(3-xy)(9-6xy)-2x^2y^2 \\
&=27-18xy-9xy+4x^2y^2 \\
&=27-xy(27-4xy)\qquad(1)\end{align*}$$

$$x+y+xy=3\implies x=\dfrac{3-y}{y+1}$$
$$xy=\dfrac{3y-y^2}{y+1}=1-\dfrac{y^2-2y+1}{y+1}=1-\dfrac{(y-1)^2}{y+1}$$

Hence $$0\le xy\le1\qquad(2)$$

$$(1)\Leftrightarrow(2)\implies\max(f(x,y))=27$$

I don't have a proof for the minimum without using symmetry of variables.

anemone has provided a method
here is my approach algebraically

$4x^2y^2-27x+27= (2xy-\dfrac{27}{2})^2 + 27 - (\dfrac{27}{2})^2$
the value is minimum when $xy = \dfrac{27}{4}$ which is > xy so as large as possible for xy which is 1
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top