Find the Minimum Values of Monic Quadratic Polynomials - POTW #403 Feb 2nd, 2020

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on finding the minimum values of monic quadratic polynomials \(P(x)\) and \(Q(x)\) given specific zeros for the compositions \(P(Q(x))\) and \(Q(P(x))\). The zeros of \(P(Q(x))\) are at \(x = -23, -21, -17, -15\), while the zeros of \(Q(P(x))\) are at \(x = -59, -57, -51, -49\). The problem requires calculating the sum of the minimum values of these polynomials, which is a common type of problem in algebra involving polynomial properties.

PREREQUISITES
  • Understanding of monic quadratic polynomials
  • Knowledge of polynomial composition
  • Familiarity with finding zeros of polynomials
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of monic quadratic polynomials
  • Learn about polynomial composition and its implications
  • Explore methods for finding zeros of higher-degree polynomials
  • Investigate optimization techniques for polynomial functions
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in algebraic problem-solving, particularly those focusing on polynomial functions and their properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Monic quadratic polynomials $P(x)$ and $Q(x)$ have the property that $P(Q(x))$ has zeros at $x=-23,\,-21,\,-17$ and $-15$ and $Q(P(x))$ has zeros at $x=-59,\,-57,\,-51$ and $-49$. What is the sum of the minimum values of $P(x)$ and $Q(x)$?

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi MHB,

I was told by castor28 that this week's POTW (High School) was a duplicate of POTW #363, which is true. I am truly sorry for letting this thing happened. I therefore want to thank him for catching the mistake.

Please let me make it up by presenting to you the following problem:

A geometric sequence $(a_n)$ has $a_1=\sin x,\,a_2=\cos x$ and $a_3=\tan x$ for some real number $x$. For what value of $n$ does $a_n=1+\cos x$?

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Congratulations to the following members for their correct answer!

1. castor28
2. MegaMoh

Solution from castor28:
Let $q$ be the ratio of the progression. Comparing $a_1$ and $a_2$, we get $q=\cot x$. On the other hand, comparing $a_1$ and $a_3$, we get $q^2 = \dfrac{1}{\cos x}$.

Taken together, these equalities give:
\begin{align*}
\frac{1}{\cos x} &= \frac{\cos^2 x}{\sin^2 x}\\
\cos^3 x &= \sin^2 x = 1 - \cos^2 x\\
(1 + \cos x) &= \frac{1}{\cos^2 x}
\end{align*}

This shows that we must find $n$ such that $a_n=\dfrac{1}{\cos^2 x} = q^4$. As we have $a_4=\tan x \cot x = 1$, we conclude that $a_8$ has the required value.

Note: Solving the equation numerically, we find $q \approx 1.151 > 1$. As the progression is strictly increasing, $a_8$ is the only term with the required value.

Alternate solution from MegaMoh:
$a_1 = \sin{x}$

$a_2 = k \sin{x} = \cos{x}$
$\implies k = \cot{x}$

$a_3 = k^2 \sin{x} = \tan{x}$
$\implies k = \sqrt{\frac1{\cos{x}}} = \cot{x} = \frac{\cos{x}}{\sin{x}}$
$\implies \cos^3{x} = \sin^2{x} = 1 - \cos^2{x}$
$\implies \cos^3{x} + \cos^2{x} - 1 = 0$
$\implies x \approx 0.71532874990708873792278349518063713\text{(rad)}$
$a_n = k^{n-1} \sin{x} = 1 + \cos{x} $
$\implies k^{n-1} = \frac{1+\cos{x}}{\sin{x}} = \frac1{\tan{(\frac{x}{2})}} = \cot{(\frac{x}{2})}$
$\implies \cot^{n-1}{x} = \cot{(\frac{x}{2})}$
$\implies n - 1 = \frac{\ln{(\cot{(\frac{x}{2})})}}{\ln{(\cot{x})}} = 7$
$\therefore$ $n = 8$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K