MHB Find the range of values for abc and a + b + c

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Range
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a, b, c$ be positive real numbers satisfying $$\frac{1}{3}\le ab+bc+ca \le 3$$.

Determine the range of values for

i) $abc$,

ii) $a+b+c$.
 
Mathematics news on Phys.org
Anemone and kaliprasad have noticed that nobody ever replied to this challenge problem. Here is my attempt, using MarkFL's favourite method of Lagrange multipliers.

To find the extreme points of $abc$ subject to the restraint $bc+ca+ab = k$ (where $\frac13\leqslant k\leqslant 3$), put the partial derivatives of $abc - \lambda(bc+ca+ab - k)$ (with respect to $a$, $b$ and $c$) equal to $0$: $$bc - \lambda (b+c) = 0,\qquad ca - \lambda (c+a) = 0,\qquad ab - \lambda (a+b) = 0.$$ Write those equations as $$\frac1\lambda = \frac1b + \frac1c = \frac1c + \frac1a = \frac1a + \frac1b$$ to see that $a=b=c$. That is the unique extremal point of $abc$. It must be a maximum because if we take $b=c=\varepsilon$ and $a = \dfrac{k-\varepsilon^2}{2\varepsilon}$ then $bc+ca+ab = k$ but $abc = \frac12\varepsilon(k-\varepsilon^2) \to0$ as $\varepsilon\to0$. So $abc\to0$ towards the boundary of the set $\{(a,b,c)\in \mathbb{R}^3:a>0,\,b>0,\,c>0\}.$ Thus the maximum possible value of $abc$ occurs when $k=3$ and $a=b=c= abc =1$. The range of values of $abc$ is therefore the half-open interval $(0,1]$.

An exactly similar calculation for the sum $a+b+c$ shows that it can take arbitrarily large values (when $b=c= \varepsilon$, $a = \dfrac{k-\varepsilon^2}{2\varepsilon}$ and $\varepsilon\to0$). There is again a unique extremal point when $a=b=c$, but this time it is a minimum, occurring when $a=b=c=\frac13$ and $a+b+c=1$. So the range of values of $a+b+c$ is the interval $[1,\infty).$
 
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)
 
MarkFL said:
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)

Hahaha...that isn't the case, Mark! That is because you don't like AM-GM for some reason, the same reason I have zero interest with the LM, I guess...:p
 
MarkFL said:
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)
[sp]Mention of the AM-GM method makes me see that this is the best way to approach this problem.View attachment 2344

In fact, $\frac13(bc + ca + ab) \geqslant \sqrt[3]{a^2b^2c^2}.$ So if $bc+ca+ab \leqslant3$ it follows that $(abc)^{2 / 3} \leqslant1$ and so $abc\leqslant 1$.

For the other part of the problem, add the inequalities $b^2 + c^2 \geqslant 2bc$, $c^2+a^2 \geqslant 2ca$ and $a^2+b^2 \geqslant 2ab$ to get $2(a^2+b^2+c^2) \geqslant 2(bc+ca+ab)$ and hence $a^2+b^2+c^2 \geqslant bc+ca+ab.$ It follows that $(a+b+c)^2 = a^2+b^2+c^2 + 2(bc+ca+ab) \geqslant 3(bc+ca+ab) \geqslant1.$ Therefore $a+b+c\geqslant1.$[/sp]
 

Attachments

  • 15274680-light-bulb-icon.jpg
    15274680-light-bulb-icon.jpg
    811 bytes · Views: 88
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Back
Top