MHB Find the range of values for abc and a + b + c

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Range
AI Thread Summary
The discussion focuses on finding the ranges for the products and sums of positive real numbers \(a\), \(b\), and \(c\) under the constraint \(\frac{1}{3} \leq ab + bc + ca \leq 3\). It concludes that the maximum value of \(abc\) is 1, occurring when \(a = b = c = 1\), leading to the range of \(abc\) being \((0, 1]\). For the sum \(a + b + c\), the minimum value is 1, achieved when \(a = b = c = \frac{1}{3}\), and it can increase indefinitely, resulting in the range \([1, \infty)\). The analysis employs methods such as Lagrange multipliers and inequalities like AM-GM to support these findings. The results highlight the unique extremal points and the behavior of \(abc\) and \(a + b + c\) within the given constraints.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a, b, c$ be positive real numbers satisfying $$\frac{1}{3}\le ab+bc+ca \le 3$$.

Determine the range of values for

i) $abc$,

ii) $a+b+c$.
 
Mathematics news on Phys.org
Anemone and kaliprasad have noticed that nobody ever replied to this challenge problem. Here is my attempt, using MarkFL's favourite method of Lagrange multipliers.

To find the extreme points of $abc$ subject to the restraint $bc+ca+ab = k$ (where $\frac13\leqslant k\leqslant 3$), put the partial derivatives of $abc - \lambda(bc+ca+ab - k)$ (with respect to $a$, $b$ and $c$) equal to $0$: $$bc - \lambda (b+c) = 0,\qquad ca - \lambda (c+a) = 0,\qquad ab - \lambda (a+b) = 0.$$ Write those equations as $$\frac1\lambda = \frac1b + \frac1c = \frac1c + \frac1a = \frac1a + \frac1b$$ to see that $a=b=c$. That is the unique extremal point of $abc$. It must be a maximum because if we take $b=c=\varepsilon$ and $a = \dfrac{k-\varepsilon^2}{2\varepsilon}$ then $bc+ca+ab = k$ but $abc = \frac12\varepsilon(k-\varepsilon^2) \to0$ as $\varepsilon\to0$. So $abc\to0$ towards the boundary of the set $\{(a,b,c)\in \mathbb{R}^3:a>0,\,b>0,\,c>0\}.$ Thus the maximum possible value of $abc$ occurs when $k=3$ and $a=b=c= abc =1$. The range of values of $abc$ is therefore the half-open interval $(0,1]$.

An exactly similar calculation for the sum $a+b+c$ shows that it can take arbitrarily large values (when $b=c= \varepsilon$, $a = \dfrac{k-\varepsilon^2}{2\varepsilon}$ and $\varepsilon\to0$). There is again a unique extremal point when $a=b=c$, but this time it is a minimum, occurring when $a=b=c=\frac13$ and $a+b+c=1$. So the range of values of $a+b+c$ is the interval $[1,\infty).$
 
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)
 
MarkFL said:
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)

Hahaha...that isn't the case, Mark! That is because you don't like AM-GM for some reason, the same reason I have zero interest with the LM, I guess...:p
 
MarkFL said:
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)
[sp]Mention of the AM-GM method makes me see that this is the best way to approach this problem.View attachment 2344

In fact, $\frac13(bc + ca + ab) \geqslant \sqrt[3]{a^2b^2c^2}.$ So if $bc+ca+ab \leqslant3$ it follows that $(abc)^{2 / 3} \leqslant1$ and so $abc\leqslant 1$.

For the other part of the problem, add the inequalities $b^2 + c^2 \geqslant 2bc$, $c^2+a^2 \geqslant 2ca$ and $a^2+b^2 \geqslant 2ab$ to get $2(a^2+b^2+c^2) \geqslant 2(bc+ca+ab)$ and hence $a^2+b^2+c^2 \geqslant bc+ca+ab.$ It follows that $(a+b+c)^2 = a^2+b^2+c^2 + 2(bc+ca+ab) \geqslant 3(bc+ca+ab) \geqslant1.$ Therefore $a+b+c\geqslant1.$[/sp]
 

Attachments

  • 15274680-light-bulb-icon.jpg
    15274680-light-bulb-icon.jpg
    811 bytes · Views: 90
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Back
Top