MHB Find the range of values for abc and a + b + c

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Range
AI Thread Summary
The discussion focuses on finding the ranges for the products and sums of positive real numbers \(a\), \(b\), and \(c\) under the constraint \(\frac{1}{3} \leq ab + bc + ca \leq 3\). It concludes that the maximum value of \(abc\) is 1, occurring when \(a = b = c = 1\), leading to the range of \(abc\) being \((0, 1]\). For the sum \(a + b + c\), the minimum value is 1, achieved when \(a = b = c = \frac{1}{3}\), and it can increase indefinitely, resulting in the range \([1, \infty)\). The analysis employs methods such as Lagrange multipliers and inequalities like AM-GM to support these findings. The results highlight the unique extremal points and the behavior of \(abc\) and \(a + b + c\) within the given constraints.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a, b, c$ be positive real numbers satisfying $$\frac{1}{3}\le ab+bc+ca \le 3$$.

Determine the range of values for

i) $abc$,

ii) $a+b+c$.
 
Mathematics news on Phys.org
Anemone and kaliprasad have noticed that nobody ever replied to this challenge problem. Here is my attempt, using MarkFL's favourite method of Lagrange multipliers.

To find the extreme points of $abc$ subject to the restraint $bc+ca+ab = k$ (where $\frac13\leqslant k\leqslant 3$), put the partial derivatives of $abc - \lambda(bc+ca+ab - k)$ (with respect to $a$, $b$ and $c$) equal to $0$: $$bc - \lambda (b+c) = 0,\qquad ca - \lambda (c+a) = 0,\qquad ab - \lambda (a+b) = 0.$$ Write those equations as $$\frac1\lambda = \frac1b + \frac1c = \frac1c + \frac1a = \frac1a + \frac1b$$ to see that $a=b=c$. That is the unique extremal point of $abc$. It must be a maximum because if we take $b=c=\varepsilon$ and $a = \dfrac{k-\varepsilon^2}{2\varepsilon}$ then $bc+ca+ab = k$ but $abc = \frac12\varepsilon(k-\varepsilon^2) \to0$ as $\varepsilon\to0$. So $abc\to0$ towards the boundary of the set $\{(a,b,c)\in \mathbb{R}^3:a>0,\,b>0,\,c>0\}.$ Thus the maximum possible value of $abc$ occurs when $k=3$ and $a=b=c= abc =1$. The range of values of $abc$ is therefore the half-open interval $(0,1]$.

An exactly similar calculation for the sum $a+b+c$ shows that it can take arbitrarily large values (when $b=c= \varepsilon$, $a = \dfrac{k-\varepsilon^2}{2\varepsilon}$ and $\varepsilon\to0$). There is again a unique extremal point when $a=b=c$, but this time it is a minimum, occurring when $a=b=c=\frac13$ and $a+b+c=1$. So the range of values of $a+b+c$ is the interval $[1,\infty).$
 
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)
 
MarkFL said:
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)

Hahaha...that isn't the case, Mark! That is because you don't like AM-GM for some reason, the same reason I have zero interest with the LM, I guess...:p
 
MarkFL said:
I think the reason I favor the method of Lagrange multipliers is because I am ignorant of the AM-GM method. (Wink) anemone has tried to teach me this, but I have been quite slow on the uptake. (Giggle)
[sp]Mention of the AM-GM method makes me see that this is the best way to approach this problem.View attachment 2344

In fact, $\frac13(bc + ca + ab) \geqslant \sqrt[3]{a^2b^2c^2}.$ So if $bc+ca+ab \leqslant3$ it follows that $(abc)^{2 / 3} \leqslant1$ and so $abc\leqslant 1$.

For the other part of the problem, add the inequalities $b^2 + c^2 \geqslant 2bc$, $c^2+a^2 \geqslant 2ca$ and $a^2+b^2 \geqslant 2ab$ to get $2(a^2+b^2+c^2) \geqslant 2(bc+ca+ab)$ and hence $a^2+b^2+c^2 \geqslant bc+ca+ab.$ It follows that $(a+b+c)^2 = a^2+b^2+c^2 + 2(bc+ca+ab) \geqslant 3(bc+ca+ab) \geqslant1.$ Therefore $a+b+c\geqslant1.$[/sp]
 

Attachments

  • 15274680-light-bulb-icon.jpg
    15274680-light-bulb-icon.jpg
    811 bytes · Views: 94
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Back
Top