MHB Find the smallest possible degree of a polynomial

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Degree Polynomial
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $h(x)$ be a nonzero polynomial of degree less than 1992 having no non-constant factor in common with $x^3-x$. Let

$\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{h(x)}{x^3-x}\right)=\dfrac{m(x)}{n(x)}$

for polynomials $m(x)$ and $n(x)$. Find the smallest possible degree of $m(x)$.
 
Mathematics news on Phys.org
Hint:

Rewrite $h(x)=(x^3-x)q(x)+r(x)$ and partial fraction decomposition of a certain rational function might be very useful as well.
 
Hint:

Let $h(x)=(x^3-x)q(x)+r(x)$ where $q(x)$ and $r(x)$ are polynomials, the degree of $r(x)$ is less than 3, and the degree of $q(x)$ is less than 1989, then

$\begin{align*}\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{h(x)}{x^3-x}\right)&=\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{r(x)}{x^3-x}\right)\\&=\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{A}{x-1}+\dfrac{B}{x}+\dfrac{C}{x+1}\right)\end{align*}$

That's all I can give as today's hint.:)
 
Solution of other:

Let $h(x)=(x^3-x)q(x)+r(x)$ where $q(x)$ and $r(x)$ are polynomials, the degree of $r(x)$ is less than 3, and the degree of $q(x)$ is less than 1989, then

$\begin{align*}\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{h(x)}{x^3-x}\right)&=\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{r(x)}{x^3-x}\right)\\&=\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{A}{x-1}+\dfrac{B}{x}+\dfrac{C}{x+1}\right)\end{align*}$

Because $h(x)$ and $x^3-x$ have no non-constant common factor, neither do $r(s)$ and $x^3-x$, therefore, $ABC\ne 0$.

Thus,

$\begin{align*}\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{h(x)}{x^3-x}\right)&=\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{r(x)}{x^3-x}\right)\\&=\dfrac{d^{1992}}{dx^{1992}}\left(\dfrac{A}{x-1}+\dfrac{B}{x}+\dfrac{C}{x+1}\right)\\&=1992!\left(\dfrac{A}{(x-1)^{1993}}+\dfrac{B}{x^{1993}}+\dfrac{C}{(x+1)^{1993}}\right)\\&=1992!\left(\dfrac{Ax^{1993}(x+1)^{1993}+B(x-1)^{1993}(x+1)^{1993}+Cx^{1993}(x-1)^{1993}}{(x^3-x)^{1993}}\right)\end{align*}$

Since $ABC\ne 0$, it's clear that the numerator and denominator have no common factor. Expanding the numerator gives an expression of the form

$(A+B+C)x^{3986}+1993(A-C)x^{3985}+1993(996A-B+996C)x^{3984}+\cdots$

From $A=C=1$, $B=-2$, we see the degree can be as low as 3984. A lower degree would imply $A+B+C=0$, $A-C=0$, $996A-B+996C=0$, implying that $A=B=C=0$, a contradiction.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top