Find the solutions of the system of congruences

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    System
AI Thread Summary
The system of congruences consists of two equations: 3x + 4y ≡ 5 (mod 13) and 2x + 5y ≡ 7 (mod 13). By manipulating these equations, it is derived that 7y ≡ 11 (mod 13), leading to the solution y ≡ 9 (mod 13). Substituting y back into the first equation results in x ≡ 7 (mod 13). The final solutions are x ≡ 7 (mod 13) and y ≡ 9 (mod 13).
Math100
Messages
813
Reaction score
229
Homework Statement
Find the solutions of the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Relevant Equations
None.
Consider the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Then
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 6x+8y\equiv 10\pmod {13}\\
&2x+5y\equiv 7\pmod {13}\implies 6x+15y\equiv 21\pmod {13}.\\
\end{align*}
Observe that ## [6x+15y\equiv 21\pmod {13}]-[6x+8y\equiv 10\pmod {13}] ## produces ## 7y\equiv 11\pmod {13} ##.
This means ## 7y\equiv 11\pmod {13}\implies 14y\equiv 22\pmod {13}\implies y\equiv 9\pmod {13} ##.
Thus
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 3x+4(9)\equiv 5\pmod {13}\\
&\implies 3x+36\equiv 5\pmod {13}\implies 3x\equiv 8\pmod {13}\\
&\implies 12x\equiv 32\pmod {13}\implies -x\equiv 6\pmod {13}\\
&\implies x\equiv -6\pmod {13}\implies x\equiv 7\pmod {13}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 7\pmod {13} ## and ## y\equiv 9\pmod {13} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the solutions of the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Relevant Equations:: None.

Consider the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Then
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 6x+8y\equiv 10\pmod {13}\\
&2x+5y\equiv 7\pmod {13}\implies 6x+15y\equiv 21\pmod {13}.\\
\end{align*}
Observe that ## [6x+15y\equiv 21\pmod {13}]-[6x+8y\equiv 10\pmod {13}] ## produces ## 7y\equiv 11\pmod {13} ##.
This means ## 7y\equiv 11\pmod {13}\implies 14y\equiv 22\pmod {13}\implies y\equiv 9\pmod {13} ##.
Thus
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 3x+4(9)\equiv 5\pmod {13}\\
&\implies 3x+36\equiv 5\pmod {13}\implies 3x\equiv 8\pmod {13}\\
&\implies 12x\equiv 32\pmod {13}\implies -x\equiv 6\pmod {13}\\
&\implies x\equiv -6\pmod {13}\implies x\equiv 7\pmod {13}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 7\pmod {13} ## and ## y\equiv 9\pmod {13} ##.
Correct. And see, just as if it was over the rationals. All numbers different from ##0## have an inverse. We can therefore solve the linear equation system as usual. This time you calculated the intersection point of two straights in the plane.

If you draw the straights, they will look a bit weird because they wrap around ##13##.
 
  • Like
Likes topsquark and Math100

Similar threads

Back
Top