Find the solutions of the system of congruences

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    System
Click For Summary
SUMMARY

The solutions to the system of congruences defined by the equations 3x + 4y ≡ 5 (mod 13) and 2x + 5y ≡ 7 (mod 13) are x ≡ 7 (mod 13) and y ≡ 9 (mod 13). By manipulating the equations, we derived 7y ≡ 11 (mod 13), leading to y ≡ 9 (mod 13). Substituting y back into the first equation allowed us to solve for x, resulting in x ≡ 7 (mod 13). This demonstrates the ability to solve linear systems in modular arithmetic.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with solving linear equations
  • Knowledge of congruences
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the properties of modular inverses in modular arithmetic
  • Learn about the Chinese Remainder Theorem
  • Explore graphical representations of linear congruences
  • Investigate applications of congruences in number theory
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving systems of linear congruences.

Math100
Messages
817
Reaction score
230
Homework Statement
Find the solutions of the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Relevant Equations
None.
Consider the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Then
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 6x+8y\equiv 10\pmod {13}\\
&2x+5y\equiv 7\pmod {13}\implies 6x+15y\equiv 21\pmod {13}.\\
\end{align*}
Observe that ## [6x+15y\equiv 21\pmod {13}]-[6x+8y\equiv 10\pmod {13}] ## produces ## 7y\equiv 11\pmod {13} ##.
This means ## 7y\equiv 11\pmod {13}\implies 14y\equiv 22\pmod {13}\implies y\equiv 9\pmod {13} ##.
Thus
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 3x+4(9)\equiv 5\pmod {13}\\
&\implies 3x+36\equiv 5\pmod {13}\implies 3x\equiv 8\pmod {13}\\
&\implies 12x\equiv 32\pmod {13}\implies -x\equiv 6\pmod {13}\\
&\implies x\equiv -6\pmod {13}\implies x\equiv 7\pmod {13}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 7\pmod {13} ## and ## y\equiv 9\pmod {13} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the solutions of the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Relevant Equations:: None.

Consider the system of congruences:
## 3x+4y\equiv 5\pmod {13} ##
## 2x+5y\equiv 7\pmod {13} ##.
Then
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 6x+8y\equiv 10\pmod {13}\\
&2x+5y\equiv 7\pmod {13}\implies 6x+15y\equiv 21\pmod {13}.\\
\end{align*}
Observe that ## [6x+15y\equiv 21\pmod {13}]-[6x+8y\equiv 10\pmod {13}] ## produces ## 7y\equiv 11\pmod {13} ##.
This means ## 7y\equiv 11\pmod {13}\implies 14y\equiv 22\pmod {13}\implies y\equiv 9\pmod {13} ##.
Thus
\begin{align*}
&3x+4y\equiv 5\pmod {13}\implies 3x+4(9)\equiv 5\pmod {13}\\
&\implies 3x+36\equiv 5\pmod {13}\implies 3x\equiv 8\pmod {13}\\
&\implies 12x\equiv 32\pmod {13}\implies -x\equiv 6\pmod {13}\\
&\implies x\equiv -6\pmod {13}\implies x\equiv 7\pmod {13}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 7\pmod {13} ## and ## y\equiv 9\pmod {13} ##.
Correct. And see, just as if it was over the rationals. All numbers different from ##0## have an inverse. We can therefore solve the linear equation system as usual. This time you calculated the intersection point of two straights in the plane.

If you draw the straights, they will look a bit weird because they wrap around ##13##.
 
  • Like
Likes   Reactions: topsquark and Math100

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K