MHB Find the sum of 5a, 25b, 125c and 625d

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The problem involves finding the sum of 5a, 25b, 125c, and 625d given the equations involving real numbers a, b, c, and d. By evaluating the polynomial f(x) at specific points and forming a triangular difference table, the fourth differences are found to be constant. Extending the table reveals that f(5) equals -60. Thus, the final result for the sum 5a + 25b + 125c + 625d is -60. The solution was confirmed by multiple participants in the discussion.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a,\,b,\,c,\,d$ are real numbers such that

$a+b+c+d=5$

$2a+4b+8c+16d=7$

$3a+9b+27c+81d=11$

$4a+16b+64c+256d=1$

Evaluate $5a+25b+125c+625d$.
 
Mathematics news on Phys.org
[sp]Let $f(x) = ax + bx^2 + cx^3 + dx^4$. Then we know that $f(0) = 0$, $f(1) = 5$, $f(2) = 7$, $f(3) = 11$ and $f(4) = 1.$ Suppose we form the repeated differences between these values, in a triangular table like this (where each element, apart from those in the top row, is the difference between the two elements above it):

$$\begin{array}{ccccccccc} 0&&5&&7&&11&&1 \\ &5&&2&&4&&-10& \\ &&-3&&2&&-14&& \\ &&&5&&-16&&& \\ &&&&-21&&&& \end{array}$$

Since $f(x)$ is a fourth-degree polynomial, its fourth differences must be constant, so we can extend the table, from the bottom row upwards, knowing that the elements in the bottom row must all be $-21$. The extended table looks like

$$\begin{array}{ccccccccccc} 0&&5&&7&&11&&1&& \color{red}{-60} \\ &5&&2&&4&&-10&& \color{red}{-61}& \\ &&-3&&2&&-14&& \color{red}{-51}&& \\ &&&5&&-16&& \color{red}{-37}&&& \\ &&&&-21&& \color{red}{-21}&&&& \end{array}$$

By the time we get back up to the top row, we see that $f(5) = -60$.[/sp]
 
Bravo, Opalg! Your answer is correct and I solved the problem using the similar approach as well!(Sun)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top