MHB Find the Sum of k when $k\in N$ and $\sqrt {k^2+48k} \in N$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sum
Albert1
Messages
1,221
Reaction score
0
$k\in N$ , and $\sqrt {k^2+48k} $ $\in N$

find $\sum k$
 
Mathematics news on Phys.org
let $\sqrt{k^2+48k} = n$
so $k^2+48k=n^2$
or $(k+24)^2 -n^2= 576\cdots(1)$
or $(k+24+n)(k+24-n) = 576$
further from (1) both (k+24) and n have to be even or odd so (k+24+n) and (k+ 24-n) both are even and k+24+n > 24
so we get
$(k+24+n, k+24-n) = (288,2)$ giving $k = 121$
or $(144,4)$ giving $k= 50$
or $(72,8)$ giving $k=16$
or$(48,12)$ giving $k=6$
or $(36,16)$ giving $k =2$
or $(32,18)$ giving $k=1$
so sum of $k = 1 + 2 + 6+16 +50+121= 196$

edit: I had missed a solution
I missed (96,6) giving k= 27 giving sum of k = 223.
 
Last edited:
kaliprasad said:
let $\sqrt{k^2+48k} = n$
so $k^2+48k=n^2$
or $(k+24)^2 -n^2= 576\cdots(1)$
or $(k+24+n)(k+24-n) = 576$
further from (1) both (k+24) and n have to be even or odd so (k+24+n) and (k+ 24-n) both are even and k+24+n > 24
so we get
$(k+24+n, k+24-n) = (288,2)$ giving $k = 121$
or $(144,4)$ giving $k= 50$
or $(72,8)$ giving $k=16$
or$(48,12)$ giving $k=6$
or $(36,16)$ giving $k =2$
or $(32,18)$ giving $k=1$
so sum of $k = 1 + 2 + 6+16 +50+121= 196$
thanks for participation , but your answer is not correct,there is one answer missing
 
Albert said:
thanks for participation , but your answer is not correct,there is one answer missing

Yes I missed (96,6) giving k= 27 giving sum of k = 221.
Note I shall edit the post also
 
kaliprasad said:
Yes I missed (96,6) giving k= 27 giving sum of k = 221.
Note I shall edit the post also

sum of k=223
 
Last edited by a moderator:
Albert said:
sum of k=223

OOPS one more mistake
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top