MHB Find the sum of the real roots

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the sum of the real roots for $2x^8-9x^7+20x^6-33x^5+46x^4-66x^3+80x^2-72x+32=0$.
 
Mathematics news on Phys.org
Hi,

It is easy to see that $1,2,1+i,1-i$ are roots of the polynomial.

The quotient of this polynomial over the corresponding factors is $p(x)=2x^4+x^3+5x^2+2x+8$.

It is clear that $p(x)>0, \ \forall x\geq 0$.

If $x\in [-1,0)$ then $|x^3+2x|<8$ so $p(x)>0$.

If $x<-1$ then $2x^4>|x^3|$ and $5x^2>|2x|$ so $p(x)>0$.

Hence the sum is 3.
 
Good solution by Fallen angel

here is mine

we have
$2x^8-9x^7+20x^6-33x^5+46x^4-66x^3+80x^2-72x+32=0$
= $2(x^8+ 16) -9(x^7+8x) +20(x^6+ 4x^2) -33(x^5+2x^3) + 46x^4=0$
or deviding by $x^4$ as x = 0 is not a solution we get
$2(x^4 + (\dfrac{2}{x})^4)-9(x^3 + (\dfrac{2}{x})^3)+20((x^2 + (\dfrac{2}{x})^2)-33(x (+\dfrac{2}{x}))+46 = 0$

now if we get $x+\dfrac{2}{x}=t$
we get
$x^2+(\dfrac{2}{x})^2=t^2-4$
$x^3+(\dfrac{2}{x})^3=t^3-6t$
$x^4+(\dfrac{2}{x})^4=t^4-8t + 8$

so given relation reduces to

$2(t^2-8t^2 +8) -9(t^3-6t) +20(t^2-4) - 33t + 46= 0$
or $2t^4-9t^3+4t^2+21t-18=0$
now we see that t = 1 and t = 3 are solutions and hence we get

$2t^4-9t^3+4t^2+21t-18=0$
= $2t^3(t-1) - 7t^2(t-1) -3t(t-1) + 18(t-1)=0$
or$(t-1)(2t^3-7t^2-3t+18) = 0$

gives a solution t = 1

or

$2t^3-7t^2- 3t + 18 = 0$ as 3 is a root we get
$2t^2(t-3) - t(t-3) - 6(t-3) = 0$
or $(t-3)(2t^2 - t^2-3) = 0$
so t = 3
or $2t^2 - t - 3 = 0 $
or $(2t-3)(t+1) = 0$
so t = 1 or 3 or - 1 or $-\dfrac{3}{2}$
now $t = x+ \dfrac{2}{x}$ and if x is positive then by AM GM inequality lowest value = $2\sqrt{2}$

or only possible value from above is
t = 3 (as t cannot be between -$2\sqrt{2}$ and $2\sqrt{2}$)
t = 3 gives x = 1 or 2 and so sum of real roots = 3
 
Thanks to both for participating and thanks too for posting the great solution to this challenge!:cool:
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top