Find the value of (x+y+z)/(l+m+k)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
SUMMARY

The discussion revolves around evaluating the expression \(\dfrac{x+y+z}{l+m+k}\) given the equations \(x^2+y^2+z^2=25\), \(l^2+m^2+k^2=36\), and \(xl+ym+zk=30\). The correct evaluation yields a result of \(\dfrac{5}{6}\). Participants acknowledged the need for clarity regarding the nature of the variables, confirming that they are not restricted to integers. The solution was validated by multiple contributors, reinforcing the accuracy of the result.

PREREQUISITES
  • Understanding of real numbers and their properties
  • Familiarity with algebraic expressions and equations
  • Knowledge of the Cauchy-Schwarz inequality
  • Ability to manipulate and simplify mathematical expressions
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications in algebra
  • Explore methods for solving systems of equations involving real numbers
  • Learn about vector representations and their geometric interpretations
  • Investigate advanced algebraic techniques for evaluating expressions
USEFUL FOR

Mathematics students, educators, and anyone interested in solving algebraic challenges and improving their problem-solving skills.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$x,\,y,\,z,\,l,\,m,\,k$ are real numbers such that

$x^2+y^2+z^2=25$,

$l^2+m^2+k^2=36$, and

$xl+ym+zk=30$.

Evaluate $\dfrac{x+y+z}{l+m+k}$.
 
Mathematics news on Phys.org
ineedhelpnow said:
Take the square root of each equation.

X+Y+Z=5

L+M+K=6

$\frac{X+Y+Z}{L+M+K}= 5/6$

$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ and not $x^2+y^2+z^2$
 
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p
 
ineedhelpnow said:
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p

No one told you that they are integers
 
kaliprasad said:
No one told you that they are integers

I don't know what else to try. Someone else can have a go at it :o
 
ineedhelpnow said:
I made an oopsie. Thanks for pointing it out :)

Add the two equations together first.

$x^2 + l^2 + y^2 + m^2 + z^2 + k^2 = 25 + 36$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(xl + ym + zk) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 2(30) = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 - 60 = 61$

$(x + l)^2 + (y + m)^2 + (z + k)^2 = 121$

1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100
4 + 36 + 81 = 121

So, x+l, y+m, and z+k are 2,6,9 in any order

From $x^2 + y^2 + z^2 = 25$
3 solution sets:
5,0,0
0,5,0
0,0,5

From $l^2 + m^2 + k^2 = 36$
3 solution sets:
6,0,0
0,6,0
0,0,6

It can only be :

x=5,y=0,z=0,l=6,m=0,n=0 or
x=0,y=5,z=0,l=0,m=6,n=0 or
x=0,y=0,z=5,l=0,m=0,k=6

In any of those cases, (x+y+z)/(l+m+k) would be :

(5+0+0)/(6+0+0) or (0+5+0)/(0+6+0) or (0+0+5)/(0+0+6)

sooooooooooo 5/6 :p

Hi ineedhelpnow!

I applaud you for taking a stab at this challenge, but kaliprasad is right; we are not told that the 6 variables are integers. The good news is, your end result $\dfrac{5}{6}$ is correct, so, in an effort to encourage more members to participate in my challenges, I will give you 50% for the correct answer, hehehe...:P
 
We have two spheres centered at the origin. If $$x,y,z$$ and $$l,m,k$$ are treated as the components of
two collinear vectors the equation $$xl+ym+zk=30$$ always holds:

$$<x,y,z>\cdot<l,m,k>\,=5\cdot6\cos(0)=30$$

and so

$$\frac{x+y+z}{l+m+k}=\frac{|<x,y,z>|}{|<l,m,k>|}=\frac56$$

as required.
 
Last edited:
greg1313 said:
We have two spheres centered at the origin. If $$x,y,z$$ and $$l,k,m$$ are treated as the components of
two collinear vectors the equation $$xl+ym+zk=30$$ always holds:

$$<x,y,z>\cdot<l,m,k>\,=5\cdot6\cos(0)=30$$

and so

$$\frac{x+y+z}{l+m+k}=\frac{|<x,y,z>|}{|<l,m,k>|}=\frac56$$

as required.

Bravo, greg1313! Thanks for participating! :cool:
 
Another method of other to solve for this challenge:

$x^2+y^2+z^2=25$ gives us $\left(\dfrac{x}{5}\right)^2+\left(\dfrac{y}{5}\right)^2+\left(\dfrac{z}{5}\right)^2=1$,

$l^2+m^2+k^2=36$ gives us $\left(\dfrac{l}{6}\right)^2+\left(\dfrac{m}{6}\right)^2+\left(\dfrac{k}{6}\right)^2=1$ and

$\dfrac{xl}{30}+\dfrac{ym}{30}+\dfrac{zk}{30}=1$

So $\left(\dfrac{x}{5}\right)^2+\left(\dfrac{y}{5}\right)^2+\left(\dfrac{z}{5}\right)^2-2\left(\dfrac{xl}{30}+\dfrac{ym}{30}+\dfrac{zk}{30}\right)+\left(\dfrac{l}{6}\right)^2+\left(\dfrac{m}{6}\right)^2+\left(\dfrac{k}{6}\right)^2=1-2+1=0$

This implies $\left(\dfrac{x}{5}-\dfrac{l}{6}\right)^2+\left(\dfrac{y}{5}-\dfrac{m}{6}\right)^2+\left(\dfrac{z}{5}-\dfrac{k}{6}\right)^2=0$

$\therefore \dfrac{x}{5}-\dfrac{l}{6}=0,\,\,\dfrac{y}{5}-\dfrac{m}{6}=0,\,\,\dfrac{z}{5}-\dfrac{k}{6}=0$

thus we have $x=\dfrac{5l}{6}$, $y=\dfrac{5m}{6}$ and $z=\dfrac{5k}{6}$

Hence,

$\dfrac{x+y+z}{l+m+k}=\dfrac{\dfrac{5l}{6}+\dfrac{5m}{6}+\dfrac{5k}{6}}{l+m+k}=\dfrac{5}{6}$
 
Last edited:

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
2K