Find Triplets to Satisfy $x+y+z+xy+yz+zx=xyz+1$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on finding all triplets of positive integers $(x, y, z)$ that satisfy the equation $x+y+z+xy+yz+zx=xyz+1$ under the condition $x \le y \le z$. The analysis reveals that no solutions exist for $x \geq 4$. For $x = 2$, the valid triplets are $(2, 3, 13)$ and $(2, 5, 8)$. For $x = 3$, the only solution is $(3, 3, 7)$. Thus, the complete set of solutions is $(2, 3, 13)$, $(2, 5, 8)$, and $(3, 3, 7)$.

PREREQUISITES
  • Understanding of Diophantine equations
  • Familiarity with positive integer properties
  • Basic algebraic manipulation skills
  • Knowledge of factorization techniques
NEXT STEPS
  • Study Diophantine equations and their solutions
  • Learn about algebraic manipulation in number theory
  • Explore factorization methods for integer solutions
  • Investigate other forms of integer equations similar to the discussed problem
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving integer equations and exploring their properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all triplets $(x,\;y,\:z)$ of positive integers such that $x \le y \le z$ and

$x+y+z+xy+yz+zx=xyz+1$.
 
Mathematics news on Phys.org
anemone said:
Determine all triplets $(x,\;y,\:z)$ of positive integers such that $x \le y \le z$ and

$x+y+z+xy+yz+zx=xyz+1$.

Hello.

(x+1)(y+1)(z+1)=2(1+xyz)

At a glance:

(1,0,0) \ (0,1,0) \ (0,0,1) \ (-1,-1,-1)

Only meets the two restrictions: (1,0,0)

Regards.
 
The above solution is not correct. The question asks for positive integers, and $0$ IS NOT POSITIVE!
$$2,4,13$$
$$2,5,8$$
$$3,3,7$$
 
mente oscura said:
Hello.

(x+1)(y+1)(z+1)=2(1+xyz)

At a glance:

(1,0,0) \ (0,1,0) \ (0,0,1) \ (-1,-1,-1)

Only meets the two restrictions: (1,0,0)

Regards.

Thanks for participating, mente oscura! But your answer isn't correct. I'm sorry.:(

eddybob123 said:
The above solution is not correct. The question asks for positive integers, and $0$ IS NOT POSITIVE!
$$2,4,13$$
$$2,5,8$$
$$3,3,7$$

Yes, those three are the only solutions but if you don't mind me asking, I would like to see how you approached the problem, sounds good to you?
 
anemone said:
Determine all triplets $(x,\;y,\:z)$ of positive integers such that $x \le y \le z$ and

$x+y+z+xy+yz+zx=xyz+1$.
[sp]If $x$ (the smallest of these numbers) is $\geqslant4$ then each of $x,y,z$ is $\leqslant\frac14yz$; and each of $xy,xz,yz$ is $\leqslant yz$. Therefore $x+y+z+xy+yz+zx \leqslant \frac{15}4yz$. But $xyz + 1>4yz > \frac{15}4yz$. So there cannot be any soluions with $x\geqslant4.$

If $x=2$ then the equation becomes $2yz+1 = yz + 3(y+z) + 2$, so that $yz - 3(y+z) = 1$, or $(y-3)(z-3) = 10$. The only positive integer solutions with $y\leqslant z$ are $(y-3,z-3) = (1,10)$ or $(2,5)$, giving $(y,z) = (3,13)$ or $(5,8).$

If $x=3$ then the equation becomes $3yz+1 = yz + 4(y+z) + 3$, so that $yz - 2(y+z) = 1$, or $(y-2)(z-2) = 5$. The only solution is $(y-2,z-2) = (1,5)$, giving $(y,z) = (3,7)$.

Thus the only solutions are those given by eddybob:$(x,y,z) = (2,3,13),\ (2,5,8),\ (3,3,7)$.[/sp]
 
Thank you Opalg for participating and also your well explained solution!

Solution provided by other:

Let $x-1=p$, $y-1=q$ and $z-1=r$, the equation may be written in the form $pqr=2(p+q+r)+4$, where $p,q,r$ are integers such that $r \ge q \ge p \ge 0$. Observe that $p=0$ is not possible, for then $0=2(p+q)+4$ which is impossible in non-negative integers. Thus we may write this in the form

$2 \left( \dfrac{1}{pq}+\dfrac{1}{qr}+\dfrac{1}{rp} \right) +\dfrac{4}{pqr}=1$.

If $p \ge 3$, then $q \ge 3$ and $r \ge 3$. Then left side is bounded by $\dfrac{6}{9}+\dfrac{4}{27}$ which is less than 1.

We conclude that $p=1$ or $p=2$.

Case I:

Suppose $p=1$. Then we have $qr=2(q+r)+6$ or $(q-2)(r-2)=10$. This gives $q-2=1, r-2=10$ or $q-2=2$ and $r-2=4$ (recall $r \ge q$). This implies $(p,q,r)=(1,3,12), (1,4,7)$

Case II:
If $p=2$, the equation reduces to $2qr=2(2+q+r)+4$ or $qr=q+r+4$. This reduces to $(q-1)(r-1)=5$. Hence $q-1=1$ and $r-1=5$ is the only solution. This yields $(p,q,r)=(2,2,6)$

Reverting back to $x, y, z$ we get three triplets $(x,y,z)=(2,4,13),(2,5,8),(3,3,7)$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K