MHB Is the Equation $ |tanx + cotx| = |tanx| + |cotx| $ True for Any Value of $x$?

  • Thread starter Thread starter DaalChawal
  • Start date Start date
Click For Summary
The equation |tanx + cotx| = |tanx| + |cotx| is true for any value of x except at points where tanx or cotx are undefined, specifically at nπ and (2n+1)π/2. Since tanx and cotx share the same sign for all valid x, the equation holds true in those ranges. The discussion references the Triangle Inequality, which states that |a + b| is less than or equal to |a| + |b|, but in this case, equality is achieved when both terms are non-zero. Therefore, the equation is valid as long as x is not at the points where tanx or cotx are undefined. This confirms the equation's validity under specified conditions.
DaalChawal
Messages
85
Reaction score
0
Q. Is $ |tanx + cotx| = |tanx| + |cotx| $ true for any $x?$ If it is true, then find the values of $x$.

My Working -->

Since $tanx$ and $cotx$ always have the same sign, so this holds true for any value of $x$.
 
Mathematics news on Phys.org
Okay I think this should hold true for any $x$ except $n \pi$ , $\frac{(2n+1) \pi }{2}$
Am I correct?
 
In general, $\displaystyle \begin{align*} \left| a + b \right| \not\equiv \left| a \right| + \left| b \right| \end{align*}$, rather $\displaystyle \begin{align*} \left| a + b \right| \leq \left| a \right| + \left| b \right| \end{align*}$. That's called the Triangle Inequality.
 
DaalChawal said:
Q. Is $ |tanx + cotx| = |tanx| + |cotx| $ true for any $x?$ If it is true, then find the values of $x$.

My Working -->

Since $tanx$ and $cotx$ always have the same sign, so this holds true for any value of $x$.
You have to be a bit more careful than this, as Prove It says but you essentially have [math]\left | y + \dfrac{1}{y} \right | = |y| + \left | \dfrac{1}{y} \right |[/math], which is true for [math]y \neq 0[/math].

So, yes.

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
9K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
9K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
11
Views
35K
  • · Replies 2 ·
Replies
2
Views
2K