MHB Finding a Ratio for Linear Recurrence Sequences

AI Thread Summary
The discussion revolves around understanding linear recurrence sequences, specifically how to find ratios between terms when they appear inconsistent. The user presents a sequence and expresses confusion about calculating terms based on a given recurrence relation, U(n+1) = -0.3U(n) + 3, starting with U1 = 2. Another participant clarifies the recurrence relation and provides calculated terms, indicating that the sequence approaches a stable value. The user seeks further clarification on the recurrence relation and its implications for understanding the sequence's behavior.
Casio1
Messages
86
Reaction score
0
I have a linear recurrence sequence and am having a problem understanding what to do when the ratio does not seem to be the same between each of the terms, so

Terms;

4, 1.4, 2.44, 2.024... (n = 1,2,3...)

How do I find a the ratio of these terms, and if there is none, please advise how I continue?

Kind regards

Casio:confused:
 
Mathematics news on Phys.org
Casio said:
I have a linear recurrence sequence and am having a problem understanding what to do when the ratio does not seem to be the same between each of the terms, so

Terms;

4, 1.4, 2.44, 2.024... (n = 1,2,3...)

How do I find a the ratio of these terms, and if there is none, please advise how I continue?

Kind regards

Casio:confused:

Could you tell us what the recurrence relation is?

CB
 
CaptainBlack said:
Could you tell us what the recurrence relation is?

CB

U1 = 2, Un+1 =-0.3Un + 3 (n = 1,2,3...)

U2= U2.4+1 = -0.3(3.4) + 3 = 1.98

U3 = U1.98+1 = -0.3(2.98)+3 = 2.11

U4 = U2.11+1 = -0.3(3.11)+3 = 2.07

Four terms are;2, 1.98, 2.11, 2.07,...

Not sure whether the first method I used to work out the terms was correct, or whether the method I used here is correct, the course book does not give any examples to show how they are done, only examples to solve?

Thanks

Casio
 
Casio said:
U1 = 2, Un+1 =-0.3Un + 3 (n = 1,2,3...)

U2= U2.4+1 = -0.3(3.4) + 3 = 1.98

U3 = U1.98+1 = -0.3(2.98)+3 = 2.11

U4 = U2.11+1 = -0.3(3.11)+3 = 2.07

Four terms are;2, 1.98, 2.11, 2.07,...

Not sure whether the first method I used to work out the terms was correct, or whether the method I used here is correct, the course book does not give any examples to show how they are done, only examples to solve?

Thanks

Casio

What are you being asked to do with this sequence?

It obviously has an attractor at u=30/13, increasing towards it if it starts at less than 30/13 and decreasing towards it if it starts above.

CB
 
Hello, Casio!

You are misunderstanding the recurrence relation.

\text{Given: }\:U_{n+1} \:=\:-0.3U_n + 3,\;\;U_1 = 2

We have:

. . . \begin{array}{cccccc}U_1 &=& 2 \\ U_2 &=& -0.3(2) + 3 &=& 2.4 \\ U_3 &=& -0.3(2.4) + 3 &=& 2.28 \\ U_4 &=& -0.3(2.28) + 3 &=& 2.316 \\ \vdots && \vdots && \vdots \end{array}
 
soroban said:
Hello, Casio!

You are misunderstanding the recurrence relation.

\text{Given: }\:U_{n+1} \:=\:-0.3U_n + 3,\;\;U_1 = 2

We have:

. . . \begin{array}{cccccc}U_1 &=& 2 \\ U_2 &=& -0.3(2) + 3 &=& 2.4 \\ U_3 &=& -0.3(2.4) + 3 &=& 2.28 \\ U_4 &=& -0.3(2.28) + 3 &=& 2.316 \\ \vdots && \vdots && \vdots \end{array}

Thanks for setting me on the right line of thought there.

OK let me take this one step at a time so I get the proper understanding of what is actually going on with these sequences.

First, please explain what this part refers to;\text{Given:}\:U_{n+1}

Casio
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
2K
Replies
11
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
3
Views
8K
Back
Top