Petrus
- 702
- 0
Hello MHB,
I am pretty new with this serie I am supposed to find convergent or divergent.
$$\sum_{k=1}^\infty[\ln(1+\frac{1}{k})]$$
progress:
$$\sum_{k=1}^\infty[\ln(1+\frac{1}{k})]= \sum_{k=1}^\infty [\ln(\frac{k+1}{k})] = \sum_{k=1}^\infty[\ln(k+1)-\ln(k)]$$ so we got that
$$\lim_{n->\infty}(\ln(2)-\ln(1))+$$$$(\ln(3)-\ln(2))+...+(\ln(n+1)-\ln(n))$$
and this is where I am stuck
Regards,
$$|\pi\rangle$$
I am pretty new with this serie I am supposed to find convergent or divergent.
$$\sum_{k=1}^\infty[\ln(1+\frac{1}{k})]$$
progress:
$$\sum_{k=1}^\infty[\ln(1+\frac{1}{k})]= \sum_{k=1}^\infty [\ln(\frac{k+1}{k})] = \sum_{k=1}^\infty[\ln(k+1)-\ln(k)]$$ so we got that
$$\lim_{n->\infty}(\ln(2)-\ln(1))+$$$$(\ln(3)-\ln(2))+...+(\ln(n+1)-\ln(n))$$
and this is where I am stuck

Regards,
$$|\pi\rangle$$