Finding Critical Points of a Dynamical System.

Click For Summary

Discussion Overview

The discussion revolves around finding critical points of a three-dimensional dynamical system governed by a set of ordinary differential equations (ODEs). Participants explore methods for computing these critical points, particularly through the use of software, and share their approaches and findings.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant seeks assistance in finding critical points of their dynamical system using software, indicating that manual computation is too complex.
  • Another participant asks for the equations governing the dynamical system to provide more targeted help.
  • A different participant inquires about the software used to write the equations, suggesting a potential conversion to LaTeX for clarity in the forum context.
  • One participant suggests that uncoupling one equation from the others might be a strategy, though they express uncertainty about its feasibility.
  • A participant provides the governing equations of the dynamical system and describes the process for finding critical points, including setting the right-hand sides of the equations to zero.
  • Another participant shares specific critical points they found, detailing their reasoning and the steps taken to arrive at those points, while also noting conditions under which certain equations are valid.

Areas of Agreement / Disagreement

There is no consensus on the best method for finding critical points, and multiple approaches are discussed. Some participants express uncertainty about the feasibility of certain methods, while others provide specific calculations and results.

Contextual Notes

Participants mention dependencies on specific conditions for the equations, such as avoiding division by zero, which may limit the applicability of certain solutions. The discussion also reflects varying levels of familiarity with mathematical software and notation.

the_doors
Messages
17
Reaction score
0
Hello guys . I obtained a 3 dimensional dynamical system , how can I find its critical points with using software ? I tried it handy but its too involved to compute handy .
 
Physics news on Phys.org
thecoop said:
Hello guys . I obtained a 3 dimensional dynamical system , how can I find its critical points with using software ? I tried it handy but its too involved to compute handy .

Hi thecoop, :)

Welcome to MHB! What are the equations governing your dynamical system?

Kind Regards,
Sudharaka.
 
thank you
 

Attachments

  • aaa.jpg
    aaa.jpg
    38.6 KB · Views: 118
Hi thecoop,

I can't help you with your question but do have a question for you. What software did you write the equations with in your attachment? Was it Latex by any chance? Or was it with Microsoft Word? If either of those then I can show you how to use or convert to Latex that can be used on MHB.

If you already know Latex then http://www.mathhelpboards.com/f26/how-use-latex-site-27/ will show you how to use it on MHB. Someone will help you soon enough I am sure but in the meantime welcome to MHB! :)

Jameson
 
thecoop said:
thank you

Generally, I believe you want to uncouple one equation from the other two but I don't know if that is possible with your equations.
 
The dynamical system is governed by the system of ODE...

$\displaystyle x^{\ '} (t)= f_{x} \{ x(t), y(t), z(t) \}$

$\displaystyle y^{\ '} (t)= f_{y} \{ x(t), y(t), z(t) \}$

$\displaystyle z^{\ '} (t)= f_{z} \{ x(t), y(t), z(t) \}$

... and its 'critcal points' are the solution of the system of equations...

$\displaystyle f_{x} ( x, y, z ) =0$

$\displaystyle f_{y} ( x, y, z )=0$

$\displaystyle f_{z} ( x, y, z )=0$

Kind regards

$\chi$ $\sigma$
 
I got two critical points:

$ \left(-1,\dfrac{2}{5},0\right)$ and $\left (\dfrac{25}{8}, \dfrac{5}{18},-\dfrac{5}{8}\right)$.

This is how I got these. First set each of the right hand sides of your three equation to zero as Chisigma said noting that $y \ne 0$ due to the division by $y$. From the second we have

$-\dfrac{1}{4}\left(x+4z-4 \right) y+\dfrac{1}{4}\,x-\dfrac{1}{4}\,{x}^{2}-\dfrac{5}{4}\,xz+z-{z}^{2} = 0$which we can solve for $y$ provided that $x+4z-4 \ne 0 $ so we consider this case first.

If $x = 4 - 4z$ then the second equation becomes $3z-3 = 0$ giving $z = 1$ and in turn $x = 0$. The first and third equations becomes $-3$ and $5$ respectively which is inadmissible since these are both to be zero. Thus, we can conclude $x+4z-4 \ne 0 $.

Solve the second equation for $y$ gives

$y = \dfrac{(x+4 z) (x+z-1)}{x+4 z-4}$ noting that $x + 4z \ne 0$ as this would give $y = 0$.

Simplifying equations (1) and (3) gives

$-{\dfrac {{x}^{2}+9\,xz+x+12\,{z}^{2}}{x+4\,z}} = 0$ and $\,{\dfrac { \left( x+5\,z \right) z}{x+4\,z}}=0$.

These second of these gives rise to two cases and the critical point fall out.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K