Albert1
- 1,221
- 0
$m,n \in N$
satisfying :
$\sqrt {m+2007}+\sqrt {m-325}=n $
find Max(n)
satisfying :
$\sqrt {m+2007}+\sqrt {m-325}=n $
find Max(n)
Very neat! (Clapping)kaliprasad said:we have
(m+ 2007) – (m- 325) = 2332 ..1
√(m+2007)+√(m−325) = n ..(2) given
Dividing (2) by (1) we get
√(m+2007)-√(m−325) = 2332/n … (3)
And (2) and (3) to get 2 √(m+2007) = n + 2332/n
Now RHS has to be even so n is even factor of 2332/2 or 1166 hence largest n = 1166.
Albert said:now ,find min(n)=?
$2332=a^2+2ua=a(2u+a)=a\times n=2\times 1166=22\times 2\times53=22\times 106$Albert said:let :
$u^2=m-325-------(1)$
$(u+a)^2=m+2007-------(2)$
$(2)-(1):2332=a^2+2ua-----(3)$ (so a must be even)
max(n) must happen while a=2,so from (3) we have u=582
so max(n)=582+584=1166