Finding Maximum Value with Partial Differentiation

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum Value
Click For Summary

Discussion Overview

The discussion revolves around finding the maximum value of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ under the constraint $$x+y=2$$, utilizing both algebraic and calculus-based approaches. Participants explore different methods, including substitution and differentiation, to analyze the problem.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant proposes a method avoiding calculus by substituting $$x=1+t$$ and $$y=1-t$$, leading to a maximum value of $$\frac{225}{32}$$ at specific values of $$t$$.
  • Another participant presents a calculus-based approach, deriving a polynomial function $$f(x)$$ from the constraint and finding critical points where the maximum occurs at $$x=\frac{3}{4}$$ and $$x=\frac{5}{4}$$, both yielding the same maximum value of $$\frac{225}{32}$$.
  • A third participant provides an alternative algebraic manipulation of the expression, ultimately arriving at the same maximum value of $$\frac{225}{32}$$ through a different method of completing the square.

Areas of Agreement / Disagreement

Participants agree on the maximum value being $$\frac{225}{32}$$, but they present different methods to arrive at this conclusion. There is no disagreement on the maximum value itself, but the approaches to find it vary.

Contextual Notes

The discussion includes various mathematical manipulations and substitutions, which may depend on specific assumptions about the variables involved. The methods presented do not explore potential limitations or alternative constraints that could affect the results.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
 
Physics news on Phys.org
anemone said:
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
This may not be the quickest solution, but it avoids calculus. Let $x=1+t$, then $y=1-t$. Notice that $1+x+x^2+x^3 = \dfrac{x^4-1}{x-1} = \dfrac{(1+t)^4-1}{t}$, and similarly $1+y+y^2+y^3 = -\dfrac{(1-t)^4-1}{t}.$ Also $xy = 1-t^2.$ Then $$ \begin{aligned}x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 &= xy\bigl((1+x+x^2+x^3) + (1+y+y^2+y^3) - 1\bigr) \\ &= (1-t^2)\Bigl(\frac{(1+t)^4-1}{t} - \frac{(1-t)^4-1}{t} - 1\Bigr) \\ &= (1-t^2)(7+8t^2) \\ &= 7+t^2 -8t^4 \\ &= \frac{225}{32} - 8\Bigl(t^2 - \frac1{16}\Bigr)^2\quad \text{(completing the square).}\end{aligned}$$ Thus the maximum value is $\frac{225}{32}$, which occurs when $t = \pm\frac14$, or when $x = \frac34$ or $\frac54.$
 
Last edited by a moderator:
Here's a method involving the calculus:

If we use the constraint to get $$y=2-x$$ and substitute this into the objective function, we find, after simplification that:

$$f(x)=-8x^4+32x^3-47x^2+30x$$

Equating the derivative to zero:

$$f'(x)=-32x^3+96x^2-94x+30=0$$

Dividing through by 2, we have:

$$-16x^3+48x^2-47x+15=0$$

Multiplying through by -1 and factoring, we have:

$$(x-1)(4x-5)(4x-3)=0$$

Use of the first derivative test shows that relative maxima occur at:

$$x=\frac{3}{4},\,\frac{5}{4}$$

and we find:

$$f_{\text{max}}=f\left(\frac{3}{4} \right)=f\left(\frac{5}{4} \right)=\frac{225}{32}$$
 
Thanks to both of you for participating and also the awesome method on how to solve this problem too!

My solution:

$$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4=xy(x^3+x^2+x+1+y+y^2+y^3)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x^3+y^3)+(x^2+y^2)+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x+y)^3-3xy(x+y)+(x+y)^2-2xy+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((2)^3-3xy(2)+(2)^2-2xy+(2)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy(15-8xy)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=-8(xy-\frac{15}{16})^2+\frac{225}{32}$$

Hence, the maximum value is $$\frac{225}{32}$$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K