MHB Finding Maximum Value with Partial Differentiation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum Value
Click For Summary
The expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ achieves its maximum value of $$\frac{225}{32}$$ under the constraint $$x+y=2$$. By substituting $$x=1+t$$ and $$y=1-t$$, the problem simplifies, leading to the maximum occurring at $$t = \pm\frac{1}{4}$$, which corresponds to $$x = \frac{3}{4}$$ or $$x = \frac{5}{4}$$. Alternatively, using calculus, the function's derivative is set to zero, confirming the same maximum values. Both methods yield the same maximum value of $$\frac{225}{32}$$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
 
Mathematics news on Phys.org
anemone said:
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
This may not be the quickest solution, but it avoids calculus. Let $x=1+t$, then $y=1-t$. Notice that $1+x+x^2+x^3 = \dfrac{x^4-1}{x-1} = \dfrac{(1+t)^4-1}{t}$, and similarly $1+y+y^2+y^3 = -\dfrac{(1-t)^4-1}{t}.$ Also $xy = 1-t^2.$ Then $$ \begin{aligned}x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 &= xy\bigl((1+x+x^2+x^3) + (1+y+y^2+y^3) - 1\bigr) \\ &= (1-t^2)\Bigl(\frac{(1+t)^4-1}{t} - \frac{(1-t)^4-1}{t} - 1\Bigr) \\ &= (1-t^2)(7+8t^2) \\ &= 7+t^2 -8t^4 \\ &= \frac{225}{32} - 8\Bigl(t^2 - \frac1{16}\Bigr)^2\quad \text{(completing the square).}\end{aligned}$$ Thus the maximum value is $\frac{225}{32}$, which occurs when $t = \pm\frac14$, or when $x = \frac34$ or $\frac54.$
 
Last edited by a moderator:
Here's a method involving the calculus:

If we use the constraint to get $$y=2-x$$ and substitute this into the objective function, we find, after simplification that:

$$f(x)=-8x^4+32x^3-47x^2+30x$$

Equating the derivative to zero:

$$f'(x)=-32x^3+96x^2-94x+30=0$$

Dividing through by 2, we have:

$$-16x^3+48x^2-47x+15=0$$

Multiplying through by -1 and factoring, we have:

$$(x-1)(4x-5)(4x-3)=0$$

Use of the first derivative test shows that relative maxima occur at:

$$x=\frac{3}{4},\,\frac{5}{4}$$

and we find:

$$f_{\text{max}}=f\left(\frac{3}{4} \right)=f\left(\frac{5}{4} \right)=\frac{225}{32}$$
 
Thanks to both of you for participating and also the awesome method on how to solve this problem too!

My solution:

$$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4=xy(x^3+x^2+x+1+y+y^2+y^3)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x^3+y^3)+(x^2+y^2)+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x+y)^3-3xy(x+y)+(x+y)^2-2xy+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((2)^3-3xy(2)+(2)^2-2xy+(2)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy(15-8xy)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=-8(xy-\frac{15}{16})^2+\frac{225}{32}$$

Hence, the maximum value is $$\frac{225}{32}$$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K