Finding Maximum Value with Partial Differentiation

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum Value
Click For Summary
SUMMARY

The maximum value of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ under the constraint $$x+y=2$$ is $$\frac{225}{32}$$. This value occurs when $$x=\frac{3}{4}$$ or $$x=\frac{5}{4}$$. Two methods were discussed: one utilizing substitution with $$x=1+t$$ and the other employing calculus to derive the critical points of the function $$f(x)=-8x^4+32x^3-47x^2+30x$$. Both methods confirm the same maximum value.

PREREQUISITES
  • Understanding of polynomial expressions and their properties
  • Familiarity with partial differentiation techniques
  • Knowledge of the first derivative test for finding maxima
  • Ability to perform algebraic manipulation and substitution
NEXT STEPS
  • Study polynomial optimization techniques in constrained environments
  • Learn about the first derivative test and its applications in calculus
  • Explore the method of Lagrange multipliers for optimization problems
  • Investigate the implications of completing the square in polynomial expressions
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in optimization problems involving polynomial functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
 
Physics news on Phys.org
anemone said:
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
This may not be the quickest solution, but it avoids calculus. Let $x=1+t$, then $y=1-t$. Notice that $1+x+x^2+x^3 = \dfrac{x^4-1}{x-1} = \dfrac{(1+t)^4-1}{t}$, and similarly $1+y+y^2+y^3 = -\dfrac{(1-t)^4-1}{t}.$ Also $xy = 1-t^2.$ Then $$ \begin{aligned}x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 &= xy\bigl((1+x+x^2+x^3) + (1+y+y^2+y^3) - 1\bigr) \\ &= (1-t^2)\Bigl(\frac{(1+t)^4-1}{t} - \frac{(1-t)^4-1}{t} - 1\Bigr) \\ &= (1-t^2)(7+8t^2) \\ &= 7+t^2 -8t^4 \\ &= \frac{225}{32} - 8\Bigl(t^2 - \frac1{16}\Bigr)^2\quad \text{(completing the square).}\end{aligned}$$ Thus the maximum value is $\frac{225}{32}$, which occurs when $t = \pm\frac14$, or when $x = \frac34$ or $\frac54.$
 
Last edited by a moderator:
Here's a method involving the calculus:

If we use the constraint to get $$y=2-x$$ and substitute this into the objective function, we find, after simplification that:

$$f(x)=-8x^4+32x^3-47x^2+30x$$

Equating the derivative to zero:

$$f'(x)=-32x^3+96x^2-94x+30=0$$

Dividing through by 2, we have:

$$-16x^3+48x^2-47x+15=0$$

Multiplying through by -1 and factoring, we have:

$$(x-1)(4x-5)(4x-3)=0$$

Use of the first derivative test shows that relative maxima occur at:

$$x=\frac{3}{4},\,\frac{5}{4}$$

and we find:

$$f_{\text{max}}=f\left(\frac{3}{4} \right)=f\left(\frac{5}{4} \right)=\frac{225}{32}$$
 
Thanks to both of you for participating and also the awesome method on how to solve this problem too!

My solution:

$$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4=xy(x^3+x^2+x+1+y+y^2+y^3)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x^3+y^3)+(x^2+y^2)+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x+y)^3-3xy(x+y)+(x+y)^2-2xy+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((2)^3-3xy(2)+(2)^2-2xy+(2)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy(15-8xy)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=-8(xy-\frac{15}{16})^2+\frac{225}{32}$$

Hence, the maximum value is $$\frac{225}{32}$$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K