MHB Finding Maximum Value with Partial Differentiation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum Value
Click For Summary
The expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ achieves its maximum value of $$\frac{225}{32}$$ under the constraint $$x+y=2$$. By substituting $$x=1+t$$ and $$y=1-t$$, the problem simplifies, leading to the maximum occurring at $$t = \pm\frac{1}{4}$$, which corresponds to $$x = \frac{3}{4}$$ or $$x = \frac{5}{4}$$. Alternatively, using calculus, the function's derivative is set to zero, confirming the same maximum values. Both methods yield the same maximum value of $$\frac{225}{32}$$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
 
Mathematics news on Phys.org
anemone said:
Find the maximum of the expression $$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4$$ if $$x,\;y$$ are real numbers with $$x+y=2$$.
This may not be the quickest solution, but it avoids calculus. Let $x=1+t$, then $y=1-t$. Notice that $1+x+x^2+x^3 = \dfrac{x^4-1}{x-1} = \dfrac{(1+t)^4-1}{t}$, and similarly $1+y+y^2+y^3 = -\dfrac{(1-t)^4-1}{t}.$ Also $xy = 1-t^2.$ Then $$ \begin{aligned}x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 &= xy\bigl((1+x+x^2+x^3) + (1+y+y^2+y^3) - 1\bigr) \\ &= (1-t^2)\Bigl(\frac{(1+t)^4-1}{t} - \frac{(1-t)^4-1}{t} - 1\Bigr) \\ &= (1-t^2)(7+8t^2) \\ &= 7+t^2 -8t^4 \\ &= \frac{225}{32} - 8\Bigl(t^2 - \frac1{16}\Bigr)^2\quad \text{(completing the square).}\end{aligned}$$ Thus the maximum value is $\frac{225}{32}$, which occurs when $t = \pm\frac14$, or when $x = \frac34$ or $\frac54.$
 
Last edited by a moderator:
Here's a method involving the calculus:

If we use the constraint to get $$y=2-x$$ and substitute this into the objective function, we find, after simplification that:

$$f(x)=-8x^4+32x^3-47x^2+30x$$

Equating the derivative to zero:

$$f'(x)=-32x^3+96x^2-94x+30=0$$

Dividing through by 2, we have:

$$-16x^3+48x^2-47x+15=0$$

Multiplying through by -1 and factoring, we have:

$$(x-1)(4x-5)(4x-3)=0$$

Use of the first derivative test shows that relative maxima occur at:

$$x=\frac{3}{4},\,\frac{5}{4}$$

and we find:

$$f_{\text{max}}=f\left(\frac{3}{4} \right)=f\left(\frac{5}{4} \right)=\frac{225}{32}$$
 
Thanks to both of you for participating and also the awesome method on how to solve this problem too!

My solution:

$$x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4=xy(x^3+x^2+x+1+y+y^2+y^3)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x^3+y^3)+(x^2+y^2)+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x+y)^3-3xy(x+y)+(x+y)^2-2xy+(x+y)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((2)^3-3xy(2)+(2)^2-2xy+(2)+1)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy(15-8xy)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=-8(xy-\frac{15}{16})^2+\frac{225}{32}$$

Hence, the maximum value is $$\frac{225}{32}$$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K