Finding Orthogonal Matrices: 2 Solutions and Help

Click For Summary

Homework Help Overview

The discussion revolves around finding orthogonal matrices, specifically focusing on identifying additional matrices beyond the two already presented. Participants explore properties of orthogonal matrices, including determinants and the implications of rotational and reflectional characteristics.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss the properties of orthogonal matrices, including determinants and the nature of rotations versus reflections. There are attempts to derive additional matrices through matrix multiplication and examination of constraints related to orthonormality.

Discussion Status

The discussion is active, with participants sharing insights and questioning assumptions about the nature of orthogonal matrices. Some guidance has been offered regarding the need to reflect on the properties of the matrices, and various interpretations of the problem are being explored.

Contextual Notes

There is a noted constraint regarding the values in the matrices, particularly the requirement for certain entries to equal -1/sqrt(2). Participants also mention the need to consider both rotations and reflections in their search for solutions.

Poetria
Messages
267
Reaction score
42
Homework Statement
Find four distinct orthogonal 2x2 matrices, each of which has top-left entry equal to ##-\frac {1} {\sqrt{2}}##
Relevant Equations
Definition of an orthogonal matrix:
##M^T=M^{-1}##
I have found two such matrices:

##\begin{pmatrix} -cos( \frac {\pi} {4}) & sin(\frac {\pi} {4})\\ sin(\frac {\pi} {4}) & cos(\frac {\pi} {4})\end{pmatrix}####\begin{pmatrix} -cos( \frac {\pi} {4}) & -sin(\frac {\pi} {4})\\ -sin(\frac {\pi} {4}) & cos(\frac {\pi} {4})\end{pmatrix}##

Any hint how to find the other two? I have tried several solutions but all of them were wrong.
 
Physics news on Phys.org
Poetria said:
I have found two such matrices
How ?
Poetria said:
Any hint how to find the other two?
Do the explicit matrix multiplication and solve the equations ...

##\ ##
 
  • Love
Likes   Reactions: Poetria
Oh, ok, I will try. Many thanks. :)

The first matrix is a rotational one: it's easy if you know its properties. The determinant is -1.
Then I have changed the signs of both sines and verified if the second matrix is orthogonal.
BvU said:
How ?

Do the explicit matrix multiplication and solve the equations ...

##\ ##
 
Last edited:
Poetria said:
The first matrix is a rotational one
You sure ? I thought those have determinant 1 ...

##\ ##
 
  • Like
Likes   Reactions: Poetria
BvU said:
You sure ? I thought those have determinant 1 ...

##\ ##
Of course, I am wrong. I confused it with this one:

##\begin{pmatrix} cos(\pi/4) & -sin(\pi/4)\\ sin(\pi/4) & cos(\pi/4)\\\end{pmatrix}##

Anyway a rotational matrix was my point of departure. But I needed a negative cos(pi/4) in the top left corner.
 
Last edited:
Poetria said:
Any hint how to find the other two? I have tried several solutions but all of them were wrong.
I think you need to reflect a little more.
 
  • Like
Likes   Reactions: Poetria
PeroK said:
I think you need to reflect a little more.
I think so. I will get to the bottom of it sooner or later. :)
 
Well, I have studied the definition of the orthogonal matrix:
https://mathworld.wolfram.com/OrthogonalMatrix.html
"The rows of an orthogonal matrix are an orthonormal basis. That is, each row has length one, and are mutually perpendicular."

There is a constraint: -1/sqrt(2) in the left top corner of the matrix.
So I have
## \sqrt {(-\frac {1} {\sqrt(2)})^{2}+x^{2}} =1##
##x= \frac {1} {\sqrt(2)}## v ##x= -\frac {1} {\sqrt(2)}##

There are two possibilities for the first row:
##\begin{pmatrix} -\frac {1} {\sqrt(2)} & \frac {1} {\sqrt(2)}\end{pmatrix}##
##\begin{pmatrix} -\frac {1} {\sqrt(2)} & -\frac {1} {\sqrt(2)}\end{pmatrix}##

The dot product of the first and second row has to be equal to zero.

vector (-1/sqrt(2), 1/sqrt(2)) dot vector (y, z) = 0

##\frac {z} {\sqrt(2)} - \frac {y} {\sqrt(2)}=0##

Therefore y=z.
But the length of the second row must be 1.
Therefore ##y=\frac {1} {\sqrt(2)}## v ##y=-\frac {1} {\sqrt(2)}##

The only thing I could do to obtain other matrices is change ##\theta##, e.g. instead of ##\sin(\frac{\pi} {4})## give ##\sin(\frac{9*\pi} {4})## but it's the same numerically.
 
Not all orthogonal matrices are rotations. In fact, only two are rotations. The others involve rotations and a reflection.

Or, you can simply work through the options for ##\pm \frac 1 {\sqrt 2}## in each entry. That gives 8 possibilities with minus in the first entry to check.
 
  • Love
Likes   Reactions: Poetria
  • #10
Wow. :) I got it. :) Wonderful. Many thanks :)
 
  • #11
Poetria said:
Wow. :) I got it. :) Wonderful. Many thanks :)
A bit of quiet reflection was all it needed!
 
  • Like
Likes   Reactions: Poetria

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K