MHB Finding $S_{2013}^2$ from a Given Sequence

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
The discussion focuses on finding the value of $S_{2013}^2$ from the given sequence where $S_n = a_1 + a_2 + \ldots + a_n$ and the relationship $S_n - \frac{1}{a_n} = a_n - S_n$ is established. Participants analyze the implications of the equation to derive expressions for $S_n$ and $a_n$. The conversation emphasizes the need to manipulate the equation effectively to isolate $S_{2013}$. A solution is proposed that successfully calculates $S_{2013}^2$. The thread concludes with a positive acknowledgment of the solution's clarity and effectiveness.
Albert1
Messages
1,221
Reaction score
0
a sequence ${a_n>0}$ for all n

given :$S_n - \dfrac{1}{a_n}=a_n-S_n$

find :$S_{2013}^2$

where :$S_n=a_1+a_2+-------+a_n$
 
Mathematics news on Phys.org
One can easily find the first terms in the series:
\[a_1=\sqrt{1}-\sqrt{0} \\ a_2 = \sqrt{2}-\sqrt{1} \\ a_3 = \sqrt{3}-\sqrt{2}\]
Suppose this system holds for the nth level (n > 3): $a_n = \sqrt{n}-\sqrt{n-1}$ and let´s find $a_{n+1}$:
\[2S_{n+1} = a_{n+1}+\frac{1}{a_{n+1}} \\\\ 2(\sqrt{n}+a_{n+1}) = a_{n+1}+\frac{1}{a_{n+1}} \\\\ a_{n+1}^2 + 2\sqrt{n}\cdot a_{n+1}-1 = 0 \\\\ a_{n+1} = \frac{1}{2}\left ( -2\sqrt{n}\; \pm \sqrt{4n+4} \right ) \\\\ a_{n+1} = \sqrt{n+1}-\sqrt{n}\]
By the principle of induction $a_n=\sqrt{n}-\sqrt{n-1}$ and $S_n=\sqrt{n}$ for $n = 1,2,3,..$
Thus $S_{2013}^2 = (\sqrt{2013})^2 = 2013$
 
lfdahl said:
One can easily find the first terms in the series:
\[a_1=\sqrt{1}-\sqrt{0} \\ a_2 = \sqrt{2}-\sqrt{1} \\ a_3 = \sqrt{3}-\sqrt{2}\]
Suppose this system holds for the nth level (n > 3): $a_n = \sqrt{n}-\sqrt{n-1}$ and let´s find $a_{n+1}$:
\[2S_{n+1} = a_{n+1}+\frac{1}{a_{n+1}} \\\\ 2(\sqrt{n}+a_{n+1}) = a_{n+1}+\frac{1}{a_{n+1}} \\\\ a_{n+1}^2 + 2\sqrt{n}\cdot a_{n+1}-1 = 0 \\\\ a_{n+1} = \frac{1}{2}\left ( -2\sqrt{n}\; \pm \sqrt{4n+4} \right ) \\\\ a_{n+1} = \sqrt{n+1}-\sqrt{n}\]
By the principle of induction $a_n=\sqrt{n}-\sqrt{n-1}$ and $S_n=\sqrt{n}$ for $n = 1,2,3,..$
Thus $S_{2013}^2 = (\sqrt{2013})^2 = 2013$
very good solution :)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
20
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
15
Views
2K