Finding the Autocovariance function

  • Context: MHB 
  • Thread starter Thread starter nacho-man
  • Start date Start date
  • Tags Tags
    Function
Click For Summary

Discussion Overview

The discussion revolves around finding the autocovariance function (ACVF) of a stochastic process defined by the equation $X_t = 0.5X_{t-1} + Z_t$, where $Z_t$ is white noise with mean zero and variance $\sigma^2$. Participants explore the relationships between the covariances of $X_t$ and $Z_t$, and the implications of the definitions of these processes.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about calculating the ACVF for $X_t$ and $Z_t$, particularly regarding the covariance between $X$ and $Z$.
  • Another participant confirms the initial setup of the stochastic process and suggests that the calculation of the ACVF appears correct, asking for clarification on how to compute covariance.
  • Participants discuss whether the covariance between $X_t$ and $Z_t$ can be determined, noting that $X_t$ is defined in terms of $Z_t$ at different time steps.
  • One participant proposes a formula for computing the covariance between $X_t$ and $Z_t$, emphasizing that without additional information about $X_t$, concrete results cannot be obtained.
  • There is a suggestion that since $Z_t$ is white noise and independent and identically distributed (IID), it might imply that $Cov(X_t, Z_t) = 0$, although this remains uncertain.
  • Participants inquire about the source of the exercise, indicating it comes from lecture slides and expressing a desire for a concrete answer for exam preparation.

Areas of Agreement / Disagreement

Participants generally agree on the definitions and properties of the stochastic processes involved, but there is no consensus on the specific covariances, particularly between $X_t$ and $Z_t$. The discussion remains unresolved regarding the implications of $Z_t$ being white noise on the covariance with $X_t.

Contextual Notes

Participants note the lack of additional information about the process $X_t$, which complicates the determination of covariances. There are unresolved assumptions about the relationships between the variables involved.

nacho-man
Messages
166
Reaction score
0
let $X_t = 0.5X_{t-1} + Z_t$ where $Z_t$ ~ $ WN(0,\sigma^2)$

I want to find the ACVF of both $X_t$ and $Z_t$, but I am a little bit confused.
Say for $X_t$
$$\gamma(h) = COV(0.5X_{t-1} + Z_t, 0.5X_{t-1+h} + Z_{t+h}$$
$ = 0.5^2COV(X_{t-1},X_{t-1+h}) + 0.5COV(X_{t-1},Z_{t+h}) + 0.5COV(Z_{t},X_{t-1+h}) + COV(Z_{t},Z_{t+h}) $then for say $h =-1$ could I still say that the
$0.5^2 COV(X_{t-1},Z_{t+h}) = 0.5 \sigma$ ? Or is there a difference because of the differing $X $ and $Z$ terms? How do I actually find the Covariance between X and Z, given that I only know the variance of Z?
Is it unmathematical to say since X = Two different values of Z, it will have the same variance?
 
Physics news on Phys.org
First, the only information you have is $\{X_t: t \geq 0\}$ is a stochastic process, defined as $\forall t \geq 0: X_t = 0.5 X_{t-1}+Z_t$ where $Z_t \sim WN(0, \sigma^2)$. Am I right here? Is there no further information about $\{X_t: t \geq 0\}$?

Second, your calculation of the ACVF looks fine. Now, can you show how to compute a covariance?

nacho said:
then for say $h =-1$ could I still say that the
$0.5^2 COV(X_{t-1},Z_{t+h}) = 0.5 \sigma$ ?

What's your argument here?
 
Siron said:
First, the only information you have is $\{X_t: t \geq 0\}$ is a stochastic process, defined as $\forall t \geq 0: X_t = 0.5 X_{t-1}+Z_t$ where $Z_t \sim WN(0, \sigma^2)$. Am I right here? Is there no further information about $\{X_t: t \geq 0\}$?

Second, your calculation of the ACVF looks fine. Now, can you show how to compute a covariance?


What's your argument here?
Yup, there is no further information about $X$. And this is what I was confused about.

Since $X$ is valued in terms of $Z$ but at different time steps, would it also have the same Covariance as $Z$?

Otherwise, how would I determine the Covariance.
 
In my opinion:

the only things we can conclude are the following:
1. Since $Z_t \sim WN(0, \sigma^2)$ we can compute $\mbox{cov}[Z_t,Z_s], \forall s,t$.
2. To compute $\mbox{cov}[X_t,Z_t]$:
$$\mbox{cov}[X_t,Z_t]=\mbox{cov}[0.5 X_{t-1}+Z_t,Z_t]= 0.5 \mbox{cov}[X_{t-1},Z_t]+\mbox{cov}[Z_t,Z_t]$$

and ofcourse $\mbox{cov}[Z_t,Z_t]$ can be computed. The problem is that $X_t$ is a stochastic process where each $X_t$ is defined in function of $X_{t-1}$ and $Z_t$. So if we have no information about any of the $X_t$ then we can't get any concrete results.

Ps: where did you get this exercice?
 
Siron said:
In my opinion:

the only things we can conclude are the following:
1. Since $Z_t \sim WN(0, \sigma^2)$ we can compute $\mbox{cov}[Z_t,Z_s], \forall s,t$.
2. To compute $\mbox{cov}[X_t,Z_t]$:
$$\mbox{cov}[X_t,Z_t]=\mbox{cov}[0.5 X_{t-1}+Z_t,Z_t]= 0.5 \mbox{cov}[X_{t-1},Z_t]+\mbox{cov}[Z_t,Z_t]$$

and ofcourse $\mbox{cov}[Z_t,Z_t]$ can be computed. The problem is that $X_t$ is a stochastic process where each $X_t$ is defined in function of $X_{t-1}$ and $Z_t$. So if we have no information about any of the $X_t$ then we can't get any concrete results.

Ps: where did you get this exercice?

It was from a lecture slide. Professor has a habit of chucking a few questions from lecture slides into the exam, so I thought it'd be best if I had a concrete answer to it. He's gone away for now so I can't get into contact with him!

Is there any way to conclude that since $Z_t$ is White noise, ie IID that $Cov(X_t,Z_t) = 0$ ? I think that is the likely answer here anyway.
 
nacho said:
It was from a lecture slide. Professor has a habit of chucking a few questions from lecture slides into the exam, so I thought it'd be best if I had a concrete answer to it. He's gone away for now so I can't get into contact with him!

Is there any way to conclude that since $Z_t$ is White noise, ie IID that $Cov(X_t,Z_t) = 0$ ? I think that is the likely answer here anyway.

Maybe that'll clear some things up, but I'm not familiar with the concept White noise.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
994
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K