Prove that if A is an mXn matrix, there is an invertible matrix C such that CA is in reduced row-echelon form. I think I know how to get the inverse of a square or an nXn matrix B, i.e., each elementary row operation carried out on B is also carried out on an identity matrix I. [B|I] to give [I|B^-1]. But I have no idea how to do the same to an mXn matrix A in order to find C. In fact are all mXn matrices invertible? I doubt it. I am studing this on my own, so please give a hint or two to get started. Thanks.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finding the inverse of an m*n matrix

**Physics Forums | Science Articles, Homework Help, Discussion**