# What is Matrix: Definition and 1000 Discussions

The Multistate Anti-Terrorism Information Exchange Program, also known by the acronym MATRIX, was a U.S. federally funded data mining system originally developed for the Florida Department of Law Enforcement described as a tool to identify terrorist subjects.
The system was reported to analyze government and commercial databases to find associations between suspects or to discover locations of or completely new "suspects". The database and technologies used in the system were housed by Seisint, a Florida-based company since acquired by Lexis Nexis.
The Matrix program was shut down in June 2005 after federal funding was cut in the wake of public concerns over privacy and state surveillance.

View More On Wikipedia.org
1. ### I Microring resonator matrix

Hello everyone, A simple ring resonator with a bus waveguide is described by: $$\begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} = \begin{pmatrix} t & k\\ -k^* & t^* \end{pmatrix} \begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix}$$ I do not understand though why we have -k* and t*? Shouldn't...
2. ### Find Matrix P and the Diagonal Matrix D

For part (b) i was able to use equations to determine the eigenvectors; For example for ##λ =6## ##12x +5y -11z=0## ##8x-4z=0## ##32x+10y-26z=0## to give me the eigen vector, ##\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}## and so on. My question is to get matrix P does the arrangement of...
3. ### Classification of Equlibrium Points

I hope this is more properly laid out? We previously established that the stationery points were (1,1) and (-1,1) For this first stage I now need to create the elements of a Jacobian maitrix using partial differentation. I am confused by reference to the chain rule. Am I correct that for dx/dt...
4. ### Help understanding the definition of positive semidefinite matrix

Please confirm or deny the correctness of my understanding about this definition. For a given set of ##t_i##s, the matrix ##(B(t_i,t_j))^k_{i,j=1}## is a constant ##k\times k## matrix, whose entries are given by ##B(t_i,t_j)## for each ##i## and ##j##. The the 'finite' in the last line of the...
5. ### Solving a separable matrix ODE.

I have never solved a matrix ODE before, and am wondering if solving it is similar to solving ##y'=ay## where ##a## is a constant and ##y:\mathbb{R} \longrightarrow \mathbb{R}## is a function. The solution is right according to wikipedia, and I am just looking for your inputs. Thanks...
6. ### Solving a first order matrix differential equation

Let X be a continuous-time Markov chain that hops between two states ##\{1, 2\}## with rates ##\lambda, \mu>0##, so its generator is $$Q = \begin{pmatrix} -\mu & \mu\\ \lambda & -\lambda \end{pmatrix}.$$ Solve ##\pi Q = 0## for the stationary distribution, and verify that...

40. ### B Row reduction, Gaussian Elimination on augmented matrix

Hi! Please, could you help me on how to solve the following matrix ? I need to replace the value 3 on the third line by 0, the first column need to remain zero and 1 for the third column. I'm having a lot of difficulties with this. How would you proceed ? Thank you for your time and help...
41. ### A Relation between the density matrix and the annihilation operator

This question is related to equation (1),(3), and (4) in the [paper][1] [1]: https://arxiv.org/abs/2002.12252
42. ### B How to multiply matrix with row vector?

How do I calculate a 3x3 matrix multiplication with a 3 column row vector, like below? ## \begin{bmatrix} A11 & A12 & A13\\ A21 & A22 & A23\\ A31 & A32 & A33 \end{bmatrix}\begin{bmatrix} B1 & B2 & B3 \end{bmatrix} ##
43. ### 3x3 matrix with complex numbers

The attempt at a solution: I tried the normal method to find the determinant equal to 2j. I ended up with: 2j = -4yj -2xj -2j -x +y then I tried to see if I had to factorize with j so I didn't turn the j^2 into -1 and ended up with 2 different options: 1) 0= y(-4j-j^2) -x(2j-1) -2j 2)...
44. ### I About writing a unitary matrix in another way

It is easy to see that a matrix of the given form is actually an unitary matrix i,e, satisfying AA^*=I with determinant 1. But, how to see that an unitary matrix can be represented in the given way?
45. ### I Fundamental matrix of a second order 2x2 system of ODEs

Let ## \mathbf{x''} = A\mathbf{x} ## be a homogenous second order system of linear differential equations where ## A = \begin{bmatrix} a & b\\ c & d \end{bmatrix} ## and ## \mathbf{x} = \begin{bmatrix} x(t)\\ y(t)) \end{bmatrix} ## Now to solve this equation we transform it into a 4x4...
46. ### A How to take a matrix outside the diagonal operator?

How to derive (proof) the following trace(A*Diag(B*B^T)*A^T) = norm(W,2), where W = vec(sqrt(diag(A^T*A))*B) & sqrt(diag(A^T*A)) is the square root of diag(A^T*A), B & A are matrix. Please see the equation 70 and 71 on page 2068 of the supporting matrial.
47. ### A Solve a nonlinear matrix equation

Hi all, I want to know if a second solution exists for the following math equation: Ce^{At} ρ_p+(CA)^{−1} (e^{At}−I)B=0 Where C, ρ_p, A and B are constant matrices, 't' is scalar variable. I know that atleast one solution i.e. 〖t=θ〗_1 exists, but I want a method to determine if there is...
48. ### I Cycles from patterns in a permutation matrix

In a permutation matrix (the identity matrix with rows possibly rearranged), it is easy to spot those rows which will indicate a fixed point -- the one on the diagonal -- and to spot the pairs of rows that will indicate a transposition: a pair of ones on a backward diagonal, i.e., where the...
49. ### Complex Matrix in vector norm

TL;DR Summary: For every Complex matrix proove that: (Y^*) * X = complex conjugate of {(X^*) * Y} Here (Y^*) and (X^*) is equal to complex conjugate of (Y^T) and complex conjugate of (X^T) where T presents transponse of matrix I think we need to use (A*B)^T= (B^T) * (A^T) and Can you help...
50. ### I Consistent matrix index notation when dealing with change of basis

Until now in my studies - matrices were indexed like ##M_{ij}##, where ##i## represents row number and ##j## is the column number. But now I'm studying vectors, dual vectors, contra- and co-variance, change of basis matrices, tensors, etc. - and things are a bit trickier. Let's say I choose to...