MHB Finding the line of regression

  • Thread starter Thread starter Doffy
  • Start date Start date
  • Tags Tags
    Line Regression
AI Thread Summary
The discussion revolves around finding the regression line of y on x using two normal equations: 5a + 10b = 40 and 10a + 25b = 95. The user seeks clarification on how to derive the regression coefficients from these equations. It is noted that the regression equation typically takes the form y = Ax + B, where A is the regression coefficient and B is the y-intercept. The user believes that solving the equations will yield the means (x bar, y bar) but is unsure how to extract the regression coefficient. The conversation emphasizes the need for a clearer understanding of the normal equations and their components.
Doffy
Messages
12
Reaction score
0
Two normal equations are given :
5a + 10b = 40
10a + 25b = 95
What is the regression line of y on x?

I can easily find the common points from both the equations but how do I find the regression coefficeint?
 
Mathematics news on Phys.org
Doffy said:
Two normal equations are given :
5a + 10b = 40
10a + 25b = 95
What is the regression line of y on x?

I can easily find the common points from both the equations but how do I find the regression coefficeint?

Hi Doffy! Welcome to MHB! (Smile)

A regression equation is usually given as $y=Ax+B$.
The regression coefficient in this equation is $A$ and the y-intercept is $B$.

However, I'm not clear on what you have there.
What are those "normal equations"?
And what do your $a$ and $b$ represent?
 
Thanks for the welcome!:)

And the above two equations were obtained for deriving the regression line of y on x(it said so in the question).

In my opinion, by solving the above equations, the point I would get could become (x bar, y bar). But I cannot find the regression coefficient. What do you think?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top