Finding the Maximum Likelihood Estimator for a Density Function

Click For Summary

Discussion Overview

The discussion revolves around finding the maximum likelihood estimator for a density function given by $f_x(x)=\frac{2c^2}{x^3}, x\geq 0, c\geq 0$. Participants explore the likelihood function and its logarithm, questioning the validity of the density function as a probability density function.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents the likelihood function and its logarithm, suggesting that the logarithm is increasing with respect to $c$.
  • Another participant questions whether the density function integrates to 1, expressing concern that it does not satisfy the requirements of a probability density function.
  • A third participant asserts that there is no value of $c$ that makes the function a valid probability density function and points out the confusion regarding the variable $n$ in the context of a continuous variable.

Areas of Agreement / Disagreement

Participants generally agree that the density function may not be valid, but there is no consensus on how to proceed with the maximum likelihood estimation given this uncertainty.

Contextual Notes

The discussion highlights limitations regarding the validity of the density function and the assumptions about the variable $n$, which is not defined in the context of the problem.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the density function $f_x(x)=\frac{2c^2}{x^3}, x\geq 0, c\geq 0$.

I want to calculate the maximum Likelihood estimator for $c$.

We have the Likelihood Function $$L(c)=\prod_{i=1}^nf_{X_i}(x_i;c)=\prod_{i=1}^n\frac{2c^2}{x_i^3}$$

The logarithm of the Likelihood function is \begin{align*}\ell (c)&=\ln L(c)=\ln \left (\prod_{i=1}^n\frac{2c^2}{x_i^3}\right )=\sum_{i=1}^n\ln \frac{2c^2}{x_i^3}=\sum_{i=1}^n \left [\ln (2c^2)-\ln (x_i^3)\right ]\\ &=n\ln (2c^2)-\sum_{i=1}^n \ln (x_i^3) =n\left (\ln 2+\ln c^2\right )-3\sum_{i=1}^n \ln (x_i)\\ &=n\left (\ln 2+2\ln c\right )-3\sum_{i=1}^n \ln (x_i)=n\ln 2+2n\ln c-3\sum_{i=1}^n \ln (x_i)\end{align*}

The deivative is $$\ell'(c)=\frac{\partial}{\partial{c}}\left (n\ln 2+2n\ln c-3\sum_{i=1}^n \ln (x_i)\right )= \frac{2n}{c}>0$$
So $\ell$ is increasing.

How can we get from here the maximum?

Or is it easier to calculate the maximum of $L(c)$ instead of $\ell (c)$ ?

(Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the density function $f_x(x)=\frac{2c^2}{x^3}, x\geq 0, c\geq 0$.

Hey mathmari!

Shouldn't we have that the integral of the density function is $1$?
It seems to me that whatever we pick for $c$ this is not the case. (Worried)

mathmari said:
I want to calculate the maximum Likelihood estimator for $c$.

We have the Likelihood Function $$L(c)=\prod_{i=1}^nf_{X_i}(x_i;c)=\prod_{i=1}^n\frac{2c^2}{x_i^3}$$

The logarithm of the Likelihood function is \begin{align*}\ell (c)&=\ln L(c)=\ln \left (\prod_{i=1}^n\frac{2c^2}{x_i^3}\right )=\sum_{i=1}^n\ln \frac{2c^2}{x_i^3}=\sum_{i=1}^n \left [\ln (2c^2)-\ln (x_i^3)\right ]\\ &=n\ln (2c^2)-\sum_{i=1}^n \ln (x_i^3) =n\left (\ln 2+\ln c^2\right )-3\sum_{i=1}^n \ln (x_i)\\ &=n\left (\ln 2+2\ln c\right )-3\sum_{i=1}^n \ln (x_i)=n\ln 2+2n\ln c-3\sum_{i=1}^n \ln (x_i)\end{align*}

The deivative is $$\ell'(c)=\frac{\partial}{\partial{c}}\left (n\ln 2+2n\ln c-3\sum_{i=1}^n \ln (x_i)\right )= \frac{2n}{c}>0$$
So $\ell$ is increasing.

How can we get from here the maximum?

Or is it easier to calculate the maximum of $L(c)$ instead of $\ell (c)$ ?

It means that the maximum is at the right boundary of the domain, doesn't it?
And we could already observe that in $L(c)$ since it's a linear function of $c^{2n}$.

However, it seems that the density function does not satisfy the requirements of a density function.
Consequently we cannot do a likelihood analysis. (Thinking)
 
Please go back and check this problem again! First, as I like Serena said, there is NO value of c that makes this a probability density function. Second, you are trying to take a product over integer values of n but there is no "n" in the problem! The only variable is "x" and it is a continuous variable.
 
Ah ok! Thank you! (Smile)
 

Similar threads

Replies
1
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K