mnb96
- 711
- 5
Hello,
if we consider the stereographic projection \mathcal{S}^2\rightarrow \mathbb{R}^2 given in the form:
(X,Y) = \left( \frac{x}{1-z} , \frac{y}{1-z} \right)
how can I find the metric in X,Y coordinates?
-- Should I first express the projection in spherical coordinates, then find the inverse projection \mathbb{R}^2\rightarrow \mathcal{S}^2?
if we consider the stereographic projection \mathcal{S}^2\rightarrow \mathbb{R}^2 given in the form:
(X,Y) = \left( \frac{x}{1-z} , \frac{y}{1-z} \right)
how can I find the metric in X,Y coordinates?
-- Should I first express the projection in spherical coordinates, then find the inverse projection \mathbb{R}^2\rightarrow \mathcal{S}^2?
