MHB Finding the Ratio of x,y,z in $R^+$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Ratio
Click For Summary
The discussion focuses on finding the ratio of positive real numbers x, y, and z defined by a set of equations involving square roots and constants. The equations express x, y, and z in terms of each other, incorporating subtractions of fractions from their squares. Participants are tasked with solving these equations to determine the proportional relationship between x, y, and z. The hint emphasizes that all variables are positive real numbers. The goal is to derive the ratio x:y:z from the given relationships.
Albert1
Messages
1,221
Reaction score
0
$x,y,z\in R^+$
$x=\sqrt{{y^2}-\dfrac{1}{25}}+\sqrt{{z^2}-\dfrac{1}{25}}$
$y=\sqrt{{z^2}-\dfrac{1}{36}}+\sqrt{{x^2}-\dfrac{1}{36}}$
$z=\sqrt{{x^2}-\dfrac{1}{49}}+\sqrt{{y^2}-\dfrac{1}{49}}$
$find \,\,\,\, x:y:z$
 
Mathematics news on Phys.org
Albert said:
$x,y,z\in R^+$
$x=\sqrt{{y^2}-\dfrac{1}{25}}+\sqrt{{z^2}-\dfrac{1}{25}}---(1)$
$y=\sqrt{{z^2}-\dfrac{1}{36}}+\sqrt{{x^2}-\dfrac{1}{36}}---(2)$
$z=\sqrt{{x^2}-\dfrac{1}{49}}+\sqrt{{y^2}-\dfrac{1}{49}}--(3)$
$find \,\,\,\, x:y:z$
hint:
eliminate square root sign for (1) (2) (3) and rearrange,to make the left sides of them all equal
 
Albert said:
$x,y,z\in R^+$
$x=\sqrt{{y^2}-\dfrac{1}{25}}+\sqrt{{z^2}-\dfrac{1}{25}}---(1)$
$y=\sqrt{{z^2}-\dfrac{1}{36}}+\sqrt{{x^2}-\dfrac{1}{36}}---(2)$
$z=\sqrt{{x^2}-\dfrac{1}{49}}+\sqrt{{y^2}-\dfrac{1}{49}}---(3)$
$find \,\,\,\, x:y:z$

eliminate square root sign and rearrange for (1)we get:
$(x-\sqrt{{y^2}-\dfrac{1}{25}})^2=(\sqrt{{z^2}-\dfrac{1}{25}})^2$
$\rightarrow x^2+y^2-z^2=2x\sqrt {y^2-\dfrac {1}{25}}$ (square both sides again)
$\rightarrow x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=\dfrac {-4x^2}{25}---(A)$
the same procedures for (2)and(3) we get :
$\rightarrow x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=\dfrac {-4y^2}{36}---(B)$
$\rightarrow x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=\dfrac {-4z^2}{49}---(C)$
from (A)(B)(C)we have:
$\dfrac {x^2}{5^2}=\dfrac {y^2}{6^2}=\dfrac {z^2}{7^2}$
$\therefore x:y:z=5:6:7(for\,\, x,y,z>0)$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K