MHB Finding the Sum of Cubes for Rational Numbers with Integer Roots

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Summation
AI Thread Summary
The discussion focuses on finding the sum of cubes of rational numbers \( r \) such that all roots of the equation \( rx^2 + (r+2)x + r-1 = 0 \) are integers. It is established that \( r \) cannot be zero, leading to the transformation of the equation into a form where the product of the roots must be an integer. By setting \( r = \frac{1}{n} \) and analyzing the discriminant, it is determined that the only valid values for \( n \) are 1 and -3, resulting in \( r = 1 \) or \( r = -\frac{1}{3} \). Consequently, the sum of cubes is calculated as \( \frac{26}{27} \). The discussion concludes with acknowledgment of contributions that guided the solution process.
Albert1
Messages
1,221
Reaction score
0
r is rational ,and all the roots of equation:
$rx^2+(r+2)x+r-1=0$ are integers
please find :$\sum r^3$
 
Mathematics news on Phys.org
Albert said:
r is rational ,and all the roots of equation:
$rx^2+(r+2)x+r-1=0$ are integers
please find :$\sum r^3$
[sp]If $r=0$ then the equation becomes $2x-1=0$, which does not have a n integer solution. So $r\ne0$ and we can divide through by $r$, getting $x^2 + \bigl(1 + \frac2r\bigr)x + 1 - \frac1r = 0.$ The product of the roots is $1 - \frac1r$, which must be an integer, so $\frac1r$ is an integer, say $r = \frac1n.$ The equation is then $x^2 + (1+2n)x + 1-n = 0$ and its roots are $x = \frac12\bigl(-1-2n \pm\sqrt{(1+2n)^2 - 4(1-n)}\bigr).$ The discriminant is $$(1+2n)^2 - 4(1-n)= 4n^2 + 8n - 3 = 4(n+1)^2 - 7,$$ and this must be a square, say $4(n+1)^2 - 7 = m^2.$ But the only squares that differ by $7$ are $9$ and $16$. It follows that $4(n+1)^2 = 16$, so $n+1 = \pm 2.$ Therefore $n=1$ or $-3$, and $r=1$ or $-\frac13.$ The sum of cubes is therefore $1 - \frac1{27} = \frac{26}{27}.$[/sp]

Edit. Thanks to Pranav, whose deleted comment set me along the right lines for attacking this problem.
 
Last edited:
Opalg said:
[sp]If $r=0$ then the equation becomes $2x-1=0$, which does not have a n integer solution. So $r\ne0$ and we can divide through by $r$, getting $x^2 + \bigl(1 + \frac2r\bigr)x + 1 - \frac1r = 0.$ The product of the roots is $1 - \frac1r$, which must be an integer, so $\frac1r$ is an integer, say $r = \frac1n.$ The equation is then $x^2 + (1+2n)x + 1-n = 0$ and its roots are $x = \frac12\bigl(-1-2n \pm\sqrt{(1+2n)^2 - 4(1-n)}\bigr).$ The discriminant is $$(1+2n)^2 - 4(1-n)= 4n^2 + 8n - 3 = 4(n+1)^2 - 7,$$ and this must be a square, say $4(n+1)^2 - 7 = m^2.$ But the only squares that differ by $7$ are $9$ and $16$. It follows that $4(n+1)^2 = 16$, so $n+1 = \pm 2.$ Therefore $n=1$ or $-3$, and $r=1$ or $-\frac13.$ The sum of cubes is therefore $1 - \frac1{27} = \frac{26}{27}.$[/sp]

Edit. Thanks to Pranav, whose deleted comment set me along the right lines for attacking this problem.
Superb solution, Opalg! (Clapping)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top