Finite Tangent product / quotient

Click For Summary

Discussion Overview

The discussion revolves around a mathematical identity involving the tangent function, specifically the relationship between the tangent of a multiple angle and a product of tangents. Participants explore the derivation of the identity for real numbers and odd integers, focusing on theoretical aspects and mathematical reasoning.

Discussion Character

  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant presents a mathematical identity involving the tangent function and proposes to show that $$\frac{\tan mz}{\tan z}=\prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(\frac{j\pi}{m}-z\right).$$
  • Another participant discusses the roots of the equation $$\tan(m\theta) = \tan(mz)$$ and provides a detailed derivation of the formula for $$\tan(m\theta)$$ using combinatorial coefficients, leading to the proposed identity.
  • A participant appreciates the elegance of the approach used by another, noting the use of complex definitions of the tangent function and referencing de Moivre's theorem as part of their reasoning.

Areas of Agreement / Disagreement

Participants express differing approaches to the problem, with some favoring a complex analysis perspective while others focus on combinatorial reasoning. No consensus is reached on a single method or interpretation, and the discussion remains open-ended.

Contextual Notes

The discussion includes various mathematical definitions and approaches, which may depend on specific assumptions about the tangent function and its properties. The derivation steps involve complex numbers and combinatorial identities, which could introduce additional layers of complexity.

DreamWeaver
Messages
297
Reaction score
0
Just for fun, eh...? (Heidy)For $$z \in \mathbb{R}$$, and $$m \in 2\mathbb{N}+1$$, show that:$$\frac{\tan mz}{\tan z}=\prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(\frac{j\pi}{m}-z\right) $$
 
Physics news on Phys.org
[sp]The numbers $\theta = \frac{j\pi}{m}+z \ (-\lfloor m/2 \rfloor \leqslant j \leqslant \lfloor m/2 \rfloor)$ are the roots of the equation $\tan(m\theta) = \tan(mz).$ The formula for $\tan(m\theta)$ (for an odd number $m$) in terms of $t = \tan\theta$ is $$\tan(m\theta) = \frac{{m\choose1}t - {m\choose3}t^3 + {m\choose5}t^5 - \ldots + (-1)^{\lfloor m/2 \rfloor}t^m} {1 - {m\choose2}t^2 + {m\choose4}t^4 - \ldots + (-1)^{\lfloor m/2 \rfloor}{m\choose m-1}t^{m-1}}.$$ So the equation obtained by putting that expression equal to $\tan(mz)$ has roots $\tan\left(\frac{j\pi}{m}+z\right) \ (-\lfloor m/2 \rfloor \leqslant j \leqslant \lfloor m/2 \rfloor).$ Multiply out the fraction and the equation becomes $(-1)^{\lfloor m/2 \rfloor}t^m + \ldots - \tan(mz) = 0.$ The product of the roots is the constant term divided by the coefficient of $t^m.$ Therefore $$\prod_{j=-\lfloor m/2 \rfloor}^{\lfloor m/2 \rfloor} \tan\left(\frac{j\pi}{m}+z\right) = (-1)^{\lfloor m/2 \rfloor}\tan(mz).$$ Now divide by the middle term of the product and pair off the remaining factors to get $$ (-1)^{\lfloor m/2 \rfloor}\frac{\tan(mz)}{\tan z} = \prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(z - \frac{j\pi}{m}\right).$$ Finally, change the sign of the second of each of those pairs of factors. That will introduce $\lfloor m/2 \rfloor$ changes of sign, which will cancel with those on the left side of the equation and result in $$\frac{\tan mz}{\tan z}=\prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(\frac{j\pi}{m}-z\right).$$[/sp]
 
@ Opalg...

I used the standard definition of the tangent function in complex terms,

$$\tan \theta = \frac{e^{i\theta}- e^{-i\theta}}{ e^{i\theta}+ e^{-i\theta}}$$But your approach is far more elegant. Very nicely doen indeed! (Yes)
 
DreamWeaver said:
@ Opalg...

I used the standard definition of the tangent function in complex terms,

$$\tan \theta = \frac{e^{i\theta}- e^{-i\theta}}{ e^{i\theta}+ e^{-i\theta}}$$But your approach is far more elegant. Very nicely doen indeed! (Yes)
The formula that I used for $\tan(m\theta)$ comes straight from de Moivre's theorem, of course, so the complex numbers were definitely there in the background.
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
688