MHB Finite Tangent product / quotient

DreamWeaver
Messages
297
Reaction score
0
Just for fun, eh...? (Heidy)For $$z \in \mathbb{R}$$, and $$m \in 2\mathbb{N}+1$$, show that:$$\frac{\tan mz}{\tan z}=\prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(\frac{j\pi}{m}-z\right) $$
 
Mathematics news on Phys.org
[sp]The numbers $\theta = \frac{j\pi}{m}+z \ (-\lfloor m/2 \rfloor \leqslant j \leqslant \lfloor m/2 \rfloor)$ are the roots of the equation $\tan(m\theta) = \tan(mz).$ The formula for $\tan(m\theta)$ (for an odd number $m$) in terms of $t = \tan\theta$ is $$\tan(m\theta) = \frac{{m\choose1}t - {m\choose3}t^3 + {m\choose5}t^5 - \ldots + (-1)^{\lfloor m/2 \rfloor}t^m} {1 - {m\choose2}t^2 + {m\choose4}t^4 - \ldots + (-1)^{\lfloor m/2 \rfloor}{m\choose m-1}t^{m-1}}.$$ So the equation obtained by putting that expression equal to $\tan(mz)$ has roots $\tan\left(\frac{j\pi}{m}+z\right) \ (-\lfloor m/2 \rfloor \leqslant j \leqslant \lfloor m/2 \rfloor).$ Multiply out the fraction and the equation becomes $(-1)^{\lfloor m/2 \rfloor}t^m + \ldots - \tan(mz) = 0.$ The product of the roots is the constant term divided by the coefficient of $t^m.$ Therefore $$\prod_{j=-\lfloor m/2 \rfloor}^{\lfloor m/2 \rfloor} \tan\left(\frac{j\pi}{m}+z\right) = (-1)^{\lfloor m/2 \rfloor}\tan(mz).$$ Now divide by the middle term of the product and pair off the remaining factors to get $$ (-1)^{\lfloor m/2 \rfloor}\frac{\tan(mz)}{\tan z} = \prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(z - \frac{j\pi}{m}\right).$$ Finally, change the sign of the second of each of those pairs of factors. That will introduce $\lfloor m/2 \rfloor$ changes of sign, which will cancel with those on the left side of the equation and result in $$\frac{\tan mz}{\tan z}=\prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(\frac{j\pi}{m}-z\right).$$[/sp]
 
@ Opalg...

I used the standard definition of the tangent function in complex terms,

$$\tan \theta = \frac{e^{i\theta}- e^{-i\theta}}{ e^{i\theta}+ e^{-i\theta}}$$But your approach is far more elegant. Very nicely doen indeed! (Yes)
 
DreamWeaver said:
@ Opalg...

I used the standard definition of the tangent function in complex terms,

$$\tan \theta = \frac{e^{i\theta}- e^{-i\theta}}{ e^{i\theta}+ e^{-i\theta}}$$But your approach is far more elegant. Very nicely doen indeed! (Yes)
The formula that I used for $\tan(m\theta)$ comes straight from de Moivre's theorem, of course, so the complex numbers were definitely there in the background.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
1
Views
999
Replies
1
Views
1K
Replies
7
Views
2K
Back
Top