DreamWeaver
- 297
- 0
Just for fun, eh...? (Heidy)For $$z \in \mathbb{R}$$, and $$m \in 2\mathbb{N}+1$$, show that:$$\frac{\tan mz}{\tan z}=\prod_{j=1}^{ \lfloor m/2 \rfloor } \tan\left(\frac{j\pi}{m}+z\right) \tan\left(\frac{j\pi}{m}-z\right) $$