A First Order in Time Derivatives + Phase Space

Click For Summary
The discussion focuses on the implications of Chern-Simons theory being first order in time derivatives, particularly regarding the nature of Wilson loops as they relate to phase space and configuration space. It clarifies that "solutions" refer to the outcomes of the dynamical system described by the theory. The relationship between first order time derivatives and these spaces is explained by noting that first order equations only require initial conditions for the variable, while second order equations necessitate both the variable and its first derivative, leading to a larger phase space. This distinction highlights how the structure of the equations influences the dimensionality and characterization of the spaces involved. Understanding this relationship is crucial for grasping the dynamics described by Chern-Simons theory.
thatboi
Messages
130
Reaction score
20
Hey all,
I am reading David Tong's notes on Chern-Simons: https://www.damtp.cam.ac.uk/user/tong/qhe/five.pdf
and he makes the following statement that doesn't make much sense to me: "Because the Chern-Simons theory is first order in time derivatives, these Wilson loops are really parameterising the phase space of solutions, rather than the configuration space."
What exactly does he mean by "solutions"? Also what is the relation between being first order in time derivative and these different spaces.
 
  • Like
Likes gentzen and jbergman
Physics news on Phys.org
thatboi said:
"Because the Chern-Simons theory is first order in time derivatives, these Wilson loops are really parameterising the phase space of solutions, rather than the configuration space."
What exactly does he mean by "solutions"? Also what is the relation between being first order in time derivative and these different spaces.
The phase space of a dynamical system defined by a stationary action principle is isomorphic to the space of initial conditions of the resulting system of differential equations. A differential equation for ##q(t)## that is first order in time needs the initial value for ##q## only, hence has the configuration space as phase space. But if the differential equation is of second order in time, one needs initial conditions on ##q## and its first time derivative, which after the conventional Legendre transform leads to a first order system in a Hamiltonian phase space that is ''twice as large'', whose points are labelled by ##(q,p)##.
 
Last edited:
  • Like
  • Informative
Likes thatboi, vanhees71 and gentzen
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K