MHB For which primes, does the equation have a rational solution?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Primes Rational
Click For Summary
The discussion centers on determining for which primes \( p \) the equation \( x^2 + y^2 = 3z^2 \) has a rational solution in \( \mathbb{Q}_p \). It is noted that for all primes \( p \) not dividing \( 2 \) or \( 3 \), there is a rational solution. The conversation highlights the need to show that the equation has no solutions in \( \mathbb{Q}_2 \) and references the Hilbert symbol for evaluating non-trivial solutions. The equation can be reformulated as \( X^2 - Y^2 - 3Z^2 = 0 \), requiring the computation of \( (-1, -3)_p \) to establish the existence of solutions. The discussion suggests consulting Serre's "Course in Arithmetic" for further guidance on this topic.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I have to find for which primes $p$, the equation $x^2+y^2=3z^2$ has a rational point in $\mathbb{Q}_p$.

According to my notes:

Obviously, $\forall p \in \mathbb{P}, p \nmid 2 \cdot 3$, there is a rational solution in $\mathbb{Q}_p$.

But,why is it obvious that the equation has a rational solution in $\mathbb{Q}_p,\forall p \in \mathbb{P}, p \nmid 2 \cdot 3 $ ?

Then, it is shown that the equation has no non-trivial solutions in $\mathbb{Q}_3$.Now, I have to show that the equation has no solution in $\mathbb{Q}_2$.

But, how can I do this? :confused: :confused:
 
Mathematics news on Phys.org
Are you familiar with the Hilbert symbol? Given a field $k$, and $\alpha,\beta$ non-zero elements of $k$ we define $(\alpha,\beta)_k = 1$ if $Z^2 - \alpha X^2 - \beta Y^2 = 0$ has a non-trivial solution, otherwise, we define $(\alpha,\beta)_k = -1$.

Note that your equation can be rewritten as $X^2 - Y^2 - 3Z^2 = 0$. Since you want a non-trivial solution in $\mathbb{Q}_p$ you require that $(-1,-3)_p=0$. It remains to explicitly compute that. I suggest to read chapter-3 in "Course in Arithmetic" by Serre, that tells you exactly how to do it.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K