MHB For which primes, does the equation have a rational solution?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Primes Rational
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I have to find for which primes $p$, the equation $x^2+y^2=3z^2$ has a rational point in $\mathbb{Q}_p$.

According to my notes:

Obviously, $\forall p \in \mathbb{P}, p \nmid 2 \cdot 3$, there is a rational solution in $\mathbb{Q}_p$.

But,why is it obvious that the equation has a rational solution in $\mathbb{Q}_p,\forall p \in \mathbb{P}, p \nmid 2 \cdot 3 $ ?

Then, it is shown that the equation has no non-trivial solutions in $\mathbb{Q}_3$.Now, I have to show that the equation has no solution in $\mathbb{Q}_2$.

But, how can I do this? :confused: :confused:
 
Mathematics news on Phys.org
Are you familiar with the Hilbert symbol? Given a field $k$, and $\alpha,\beta$ non-zero elements of $k$ we define $(\alpha,\beta)_k = 1$ if $Z^2 - \alpha X^2 - \beta Y^2 = 0$ has a non-trivial solution, otherwise, we define $(\alpha,\beta)_k = -1$.

Note that your equation can be rewritten as $X^2 - Y^2 - 3Z^2 = 0$. Since you want a non-trivial solution in $\mathbb{Q}_p$ you require that $(-1,-3)_p=0$. It remains to explicitly compute that. I suggest to read chapter-3 in "Course in Arithmetic" by Serre, that tells you exactly how to do it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top