I Formal definition of multiplication for real and complex numbers

Click For Summary
The definition of multiplication for integers as repeated addition does not extend to real or complex numbers, as illustrated by the challenge of interpreting operations like pi times e. To formally define multiplication for real numbers, one must develop the real numbers from the rational numbers, where multiplication is defined through limits of sequences of rational numbers. The multiplication of complex numbers is then derived directly from the multiplication of real numbers. This process involves understanding the Peano Axioms and the completion of rational numbers. Overall, the formal definition of multiplication for real and complex numbers requires a more complex framework than simple repeated addition.
logicgate
Messages
13
Reaction score
2
TL;DR
What is the formal definition of multiplication for real and complex numbers ?
I know that the definition of multiplication for integers is just repeated addition. For example, 5 times 3 means 5 + 5 + 5, but what about if we want to extend this definition to real or complex numbers ? Like for example, what does pi times e mean ? How are we supposed to add pi to itself e times ? So it is very clear that the definition of repeated addition for multiplication doesn't work for all real numbers. So how is multiplication defined for real and complex numbers ?
 
  • Like
Likes symbolipoint
Mathematics news on Phys.org
logicgate said:
TL;DR Summary: What is the formal definition of multiplication for real and complex numbers ?

I know that the definition of multiplication for integers is just repeated addition. For example, 5 times 3 means 5 + 5 + 5, but what about if we want to extend this definition to real or complex numbers ? Like for example, what does pi times e mean ? How are we supposed to add pi to itself e times ? So it is very clear that the definition of repeated addition for multiplication doesn't work for all real numbers. So how is multiplication defined for real and complex numbers ?
This is part of the wider question of how the real numbers are developed in the first place. The starting point is the Peano Axioms:

https://en.wikipedia.org/wiki/Peano_axioms

From this, the properties of addition and multiplication of natural numbers can be formally developed from first principles.

Next comes the development of the rational numbers, from the naural numbers. With addition and multiplication defined as:
$$\frac a b + \frac c d = \frac{ad + bc}{bd}, \ \text{and}\ \frac a b \cdot \frac c d = \frac{ac}{bd}$$Finally, the real numbers can be developed essentially as a completion of the rationals. Each real number can be defined as the limit of some sequence of rationals, And addition and multiplication of real numbers can then be defined using addition and multiplication for these rational sequences.

It probably takes a semester or more to go through all this formally.

PS addition and multiplication of complex numbers is defined directly using addition and multiplication of real numbers. This is actually the only easy bit!
 
You can also view it this way:

##3\times 2=6##
##3.1\times 2.7=8.37##
##3.14\times 2.71=8.5094##
##3.141\times 2.718=8.527238##
##3.1415\times 2.7182=8.5392253##
etc.

The limit of this sequence is ##\pi\times e = 8.539734222673567\dots##

We can also do the same from above, getting successively smaller intervals which contain the value:

##4\times 3=12##
##3.2\times 2.8=8.96##
##3.15\times 2.72=8.568##
##3.142\times 2.719=8.543098##
##3.1416\times 2.7183=8.53981128##
etc.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K