MHB Fourier Coefficients for $f(\theta) = \theta$

Click For Summary
The discussion focuses on calculating the Fourier coefficients for the function \( f(\theta) = \theta \) over the interval \( -\pi < \theta \leq \pi \). It is established that since \( f \) is odd, the Fourier series will only include sine terms. The coefficients \( a_n \) are derived, resulting in \( a_n = \frac{-2\pi}{n} \) for even \( n \) and \( a_n = \frac{2\pi}{n} \) for odd \( n \). A correction is noted regarding the integral's coefficient, emphasizing that the final formula should not include a \( \pi \) and should use parentheses for clarity. The corrected series representation is \( 2\sum_{n=1}^{\infty}\Bigl(\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\Bigr) \).
Dustinsfl
Messages
2,217
Reaction score
5
$f(\theta) = \theta$ for $-\pi < \theta \leq \pi$

$f$ is odd so $\sum\limits_{n = 1}^{\infty}a_n\sin n\theta$.
$$
\frac{1}{\pi}\int_{-\pi}^{\pi}\theta\sin n\theta d\theta
$$
So I have that
$$
a_n = \begin{cases}
\frac{-2\pi}{n}, & \text{if n is even}\\
\frac{2\pi}{n}, & \text{if n is odd}
\end{cases}
$$
So the solution would be
$$
2\pi\sum_{n =1}^{\infty}\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\mbox{?}
$$
 
Last edited:
Physics news on Phys.org
dwsmith said:
$f(\theta) = \theta$ for $-\pi < \theta \leq \pi$

$f$ is odd so $\sum\limits_{n = 1}^{\infty}a_n\sin n\theta$.
$$
\frac{1}{\pi}\int_{-\pi}^{\pi}\theta\sin n\theta d\theta
$$
So I have that
$$
a_n = \begin{cases}
\frac{-2\pi}{n}, & \text{if n is even}\\
\frac{2\pi}{n}, & \text{if n is odd}
\end{cases}
$$
So the solution would be
$$
2\pi\sum_{n =1}^{\infty}\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\mbox{?}
$$
Correct except that the $\dfrac1\pi$ in front of the integral has got lost somewhere along the line, so there should not be a $\pi$ in the final formula. Also, it would look better if you used some parentheses to indicate that everything to the right of the $\sum$ is meant to be included in the summation: $$ 2\sum_{n =1}^{\infty}\Bigl(\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\Bigr).$$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K